Servo Sistemleri İçin Bir Akıllı Makine Durum İzleme Modeli Geliştirilmesi


Creative Commons License

Tezin Türü: Yüksek Lisans

Tezin Yürütüldüğü Kurum: Marmara Üniversitesi, Fen Bilimleri Enstitüsü, Mekatronik Mühendisliği Anabilim Dalı, Türkiye

Tezin Onay Tarihi: 2022

Tezin Dili: Türkçe

Öğrenci: HAYRİ MUTLU

Asıl Danışman (Eş Danışmanlı Tezler İçin): Mustafa Caner Aküner

Eş Danışman: Gazi Akgün

Özet:

Endüstriyel servo sistemlerin devreye alınması ve parametrelerinin belirlenmesi işlemleri, devreye alan kişinin yetenek ve bilgisi ile sınırlıdır. Ayrıca devreye alınmış sistemler çevresel etkilerin veya yüklerin değişmesi halinde genellikle tekrar optimize edilmezler. Bu tez çalışmasında servo sistemler için oransal, integral ve türev (PID) parametrelerinin sürekli optimum şekilde çalışmasını hedefleyen bir yapay sinir ağı (YSA) modeli geliştirilmesi amaçlanmıştır. Bu işlem için de servo sistemlere girilen parametrelerin kontrolü ve yeniden düzenlenmesi için endüstriyel bir kontrolcü üzerinde servo sistemden elde edilecek anlık üretilen akım, tork, güç, pozisyon gibi verileri kullanan YSA tekniği ile oluşturulmuş bir makine durum izleme algoritması oluşturulmuştur. Bu oluşturulan algoritma ile servo sistemin hız ve akım PID'lerinin parametrelerinin yük karakteristiğinin değişmesi durumunda güncellenmesi sağlanmıştır. İlgili algoritmayı oluşturmak için Siemens S120 servo sürücü ile bir deney düzeneği hazırlanmış ve farklı karakteristikte yükler ile yapılan testler sonucunda eğitim verileri elde edilmiştir. Elde edilen veriler Matlab neural fitting tool box'ı kullanılarak yapay sinir ağlarının eğitiminde kullanılmıştır. Elde edilen model endüstride sıklıkla tercih edilen bir kontrolcü olan Siemens S7-1500 serisi bir programlanabilir lojik kontrolcüye (PLC) entegre edilmiştir. PLC'ye entegre edilen yapay sinir ağları algoritmasına veri beslemek için servo sürücüden veriler ProfiNET "isochrom real time" protokolü kullanılarak toplanmıştır, bu protokol servo sistemin içerisinden düzenli ve eş zamanlı veriler elde etmeyi garanti etmektedir. Elde edilen anlık akım, tork, güç, pozisyon gibi veriler işlendikten sonra PLC üzerinde çalışan yapay sinir ağları algoritmasını beslemek için kullanılmıştır. İlgili algoritmanın üretmiş olduğu yeni servo parametreleri yine ProfiNET protokolü ile servo sürücüye yüklenmesi sağlanmıştır. İlgili deney düzeneğinde yapay sinir ağları tekniği ile geliştirilmiş algoritmanın üretmiş olduğu yeni PID değerlerinin sürücü üzerinden elde dilen hız ve akım değerleri ile klasik Ziegler-Nichols modu kullanılarak elde edilmiş PID değerlerinin kullanılarak tekrarlanan deney sonuçları karşılaştırılmıştır.