Salt Spray Resistant Acrylic Copolymers Containing Bio-based Cardanol Molecules with Hybrid Thermoplastic-Thermoset Characteristics


Dizman C., Eral S., Babayi̇ği̇t L., KAYAMAN APOHAN N.

Journal of Polymers and the Environment, cilt.32, sa.11, ss.6029-6044, 2024 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 32 Sayı: 11
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1007/s10924-024-03358-7
  • Dergi Adı: Journal of Polymers and the Environment
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, PASCAL, Aerospace Database, Agricultural & Environmental Science Database, BIOSIS, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, Environment Index, Geobase, Greenfile, Metadex, Pollution Abstracts, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.6029-6044
  • Anahtar Kelimeler: Bio-based, Cardanol, Crosslinking, Salt spray resistant, Thermoplastic-thermoset acrylics
  • Marmara Üniversitesi Adresli: Evet

Özet

In this study, a novel bio-based acrylic monomer derived from cardanol was synthesized and used in order to prepare acrylic copolymers that can be applied as thermoplastic polymers alone initially and then curable with the help of some driers to get a crosslink network similar to thermosetting polymers with their hydrophobic long alkyl chains having double bonds in their chemical structure. The synthesized polymers have the ability to be used in the paint or varnish formulations with or without paint driers. The synthesized monomers and polymers were characterized by gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance spectroscopy (1H NMR). Thermal properties of the polymers and obtained coatings therefrom were studied by differential scanning calorimeter (DSC) and thermal gravimetric analysis (TGA). The varnish’s thermal and coating characteristics, such as its adhesion, gloss, hardness, salt spray resistance, and touch and hard drying times, were examined and analyzed. The results showed that the bio-based cardanol moieties improved the coatings’ resistance to chemicals and saltwater exposure as well as their thermal and mechanical characteristics through the incorporation aromatic and long linear alkyl chains. The block copolymers with cardanol units were used both on its own to produce thermoplastic polymeric films and in conjunction with driers to get thermoset crosslinking networks. The contact angle of thermoset polymeric films with driers measured as 77° but in case of thermoplastic blank polymer, it was 61°. Furthermore, the Tg of blank polymer was 13.37 °C, but with the addition of 10% cardanol units and a small amount of driers, the Tg was increased to 53.12 °C.