Energies, cilt.17, sa.5, 2024 (SCI-Expanded)
The predominance of petroleum-based fuels is lessened by the preference for biodiesel as an alternative. However, one of the adverse effects arising from the use of biodiesel is the formation of waste heat. The novel aspect of this study proposes a sustainable solution that will decelerate global warming by recovering waste heat through a new exhaust design equipped with thermoelectric generators. The study obtained test fuels by blending vegetable-derived biodiesel in five different volumetric ratios (0, 10%, 20%, 50%, and 100%). The experiments were carried out at three different constant engine speeds (1000, 1250, and 1500 RPM) and five different engine loads (25%, 50%, 75%, and 100%) on a single-cylinder diesel engine. At the end of the experiment, the combustion characteristics, engine performance, exhaust emissions, waste heat values, and electrical energy gained from the thermoelectric system of biodiesel blend fuels compared to diesel were evaluated. Specific fuel consumption, effective efficiency, exhaust gas temperatures, exhaust emissions, and electrical power generation with TEG in the diesel engine were evaluated, focusing on the different biodiesel blend ratios, engine load, and engine speeds.