International Journal of Electrical and Computer Engineering, cilt.10, sa.5, ss.4759-4769, 2020 (Scopus)
Copyright © 2020 Institute of Advanced Engineering and Science. All rights reserved.In this study, an analysis was conducted by using discrete wavelet packet transform (DWPT) and support vector machine (SVM) methods to determine undamaged and cracked plates. The pendulum was used to land equal impacts on plates in this experimental study. Sounds, which emerge from plates as a result of the impacts applied to undamaged and cracked plates, are sound signals used in the analysis and DWPT of these sound signals were obtained with 128 decompositions for feature extraction. The first four components, reflecting the characteristics of undamaged and cracked plates within these 128 components, were selected for enhancing the performance of the classifier and energy values were used as feature vectors. In the study, the SVM model was created by selecting appropriate C and γ parameters for the classifier. Undamaged and cracked plates were seen to be successfully identified by an analysis of the training and testing phases. Undamaged and cracked statuses of the plates that are undamaged and have the analysis had identified different cracks. The biggest advantage of this analysis method used is that it is high-precision, is relatively low in cost regarding experimental equipment and requires hardware.