Sensors, cilt.25, sa.4, 2025 (SCI-Expanded)
Robust autonomous navigation systems rely on mapping, locomotion, path planning, and localization factors. Localization, one of the most essential factors of navigation, is a crucial requirement for a mobile robot because it needs the capability to localize itself in the environment. Global Positioning Systems (GPSs) are commonly used for outdoor mobile robot localization tasks. However, various environmental circumstances, such as high-rise buildings and trees, affect GPS signal quality, which leads to reduced precision or complete signal blockage. This study proposes a visual-based localization system for outdoor mobile robots in crowded urban environments. The proposed system comprises three steps. The first step is to detect the text in urban areas using the “Efficient and Accurate Scene Text Detector (EAST)” algorithm. Then, EasyOCR was applied to the detected text for the recognition phase to extract text from images that were obtained from EAST. The results from text detection and recognition algorithms were enhanced by applying post-processing and word similarity algorithms. In the second step, once the text detection and recognition process is completed, the recognized word (label/tag) is sent to the Places API in order to return the recognized word’s coordinates that are passed within the specified radius. Parallely, points of interest (POI) data are collected for a defined area by a certain radius while the robot has an accurate internet connection. The proposed system was tested in three distinct urban areas by creating five scenarios under different lighting conditions, such as morning and evening, using the outdoor delivery robot utilized in this study. In the case studies, it has been shown that the proposed system provides a low error of around 4 m for localization tasks. Compared to existing works, the proposed system consistently outperforms all other approaches using just one sensor. The results indicate the efficacy of the proposed system for localization tasks in environments where GPS signals are limited or completely blocked.