Efficacy of hypochlorous acid as an alternative oral antimicrobial agent on human gingival fibroblasts, Aggregatibacter actinomycetemcomitans, and Candida albicans biofilms in vitro


Creative Commons License

Bayraktar G., Yılmaz Göler A. M., Aksu M. B., Öztürk Özener H.

Biofouling, cilt.39, sa.9-10, ss.980-989, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 39 Sayı: 9-10
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1080/08927014.2023.2288071
  • Dergi Adı: Biofouling
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Communication Abstracts, EMBASE, Environment Index, Geobase, MEDLINE, Metadex, Veterinary Science Database, DIALNET, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.980-989
  • Anahtar Kelimeler: Aggregatibacter actinomycetemcomitans, Candida albicans, chlorhexidine, fibroblasts, Hypochlorous acid
  • Marmara Üniversitesi Adresli: Evet

Özet

This study compared the cytotoxicity and antimicrobial activity of hypochlorous acid (HOCl) at 50 ppm and 200 ppm and 0.2% chlorhexidine (CHX) at various time intervals, in vitro. Cell viability and cytotoxicity of human gingival fibroblasts (HGF) were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and the lactate dehydrogenase assay. Antimicrobial effects on Aggregatibacter actinomycetemcomitans and Candida albicans were determined using the time-kill method. All solutions exhibited a significant impact on HGFs in a dose- and time-dependent manner. 50 ppm HOCl demonstrated the highest cell viability, followed by 200 ppm HOCl. Both HOCl solutions were less cytotoxic to HGFs than 0.2% CHX. 50 ppm and 200 ppm HOCl demonstrated stronger efficiencies than CHX against A. actinomycetemcomitans and C. albicans. The data suggest that HOCl solutions have potential as an alternative antiseptic to CHX due to their lower cytotoxicity and superior antimicrobial activity, but optimal dosage of HOCl requires further investigations.