hal.archives-ouvertes.fr, cilt.03242990, ss.1-21, 2021 (Hakemli Dergi)
This paper introduces self-similarity inherent in planar Milich
centered flip graphs derived from the Narayana sequence. We show that selfsimilarity found in a Narayana sequence yields a connected spanning subgraph
with a centered flip. This paper has several main results (1) Every Narayana
sequence constructs a flip graph, (2) Every Narayana sequence is self-similar
and (3) Every Pascal 3-triangle has a free group presentation.