Biotechnology Letters, cilt.47, sa.2, 2025 (SCI-Expanded)
MAPKs are one of the essential signal transduction complexes which are responsible for the perception of abiotic stress and for the producing of related transcripts for responding to abiotic stress. For systematical analyzes of the mitogen-activated protein (MAP) kinase gene families and their expression profiles in Solanum lycopersicum L. exposed to diverse heavy metal stresses, 17 SlMAPK genes were studied in comparison with their 159 orthologs from various plant species. The result of phylogenetic analysis revealed that SlMAPKs were divided into four different subgroups (A, B, C, and D) based on their nucleic acid and protein sequence alignments. SlMAPKs including A, B and C group had lower molecular weights and more hydrophobic structures than D group SlMAPKs, while possible extra phosphorylation sites predicted in D-group SLMAPKs. 24 cis regulating elements such as Box 4, TATA-box, ABRE and CAAT-box were detected in their upstream parts of DNA sequences. Also, it was determined that SlMAPKs show interactions with important proteins such as Guanine nucleotide-binding protein beta subunit, heterotrimeric G-protein, protein phosphatase 2C and HY5. The results from our gene expression analyzes, significant increases were found in the expressions of the selected SLMAPK gene with applications of a range of increasing heavy metal concentrations (e.g., by the application of the 400 mM Ni + Pb exposure, a 16-fold increase in the expression of SlMAPK gene was noted). Overall, SlMAPK genes and proteins known were re-evaluated, and the SlMAPKs interactions with some other important proteins were observed. Also, some predictions about the extra phosphorylation sites of SlMAPKs having effects on their functions were done. In addition, the expression levels of SlMAPK genes were monitored under different levels of heavy metal stress exposures.