CONVOLUTION-FACTORABLE MULTILINEAR OPERATORS


Creative Commons License

ERDOĞAN E.

Revista de la Union Matematica Argentina, cilt.65, sa.1, ss.103-117, 2023 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 65 Sayı: 1
  • Basım Tarihi: 2023
  • Doi Numarası: 10.33044/revuma.2356
  • Dergi Adı: Revista de la Union Matematica Argentina
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, MathSciNet, zbMATH, Directory of Open Access Journals, DIALNET
  • Sayfa Sayıları: ss.103-117
  • Anahtar Kelimeler: convolution, factorization, Hilbert-Schmidt operators, integral representation, Multilinear operators, polynomials, zero product pre-serving map
  • Marmara Üniversitesi Adresli: Evet

Özet

We study multilinear operators defined on topological products of Banach algebras of integrable functions and Banach left modules with con-volution product. The main theorem of the paper presents a factorization for multilinear operators through convolution that implies the property known as zero product preservation. By using this factorization we investigate prop-erties of multilinear operators including integral representations and we give applications related to orthogonally additive homogeneous polynomials and Hilbert-Schmidt operators.