Hyperheuristic Based Migrating Birds Optimization Algorithm for a Fairness Oriented Shift Scheduling Problem


Creative Commons License

Alp G., ALKAYA A. F.

MATHEMATICAL PROBLEMS IN ENGINEERING, cilt.2021, 2021 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 2021
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1155/2021/6756588
  • Dergi Adı: MATHEMATICAL PROBLEMS IN ENGINEERING
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Social Sciences Citation Index (SSCI), Scopus, Academic Search Premier, Aerospace Database, Communication Abstracts, Compendex, INSPEC, Metadex, zbMATH, Directory of Open Access Journals, Civil Engineering Abstracts
  • Marmara Üniversitesi Adresli: Evet

Özet

The purpose of this paper is twofold. First, it introduces a new hybrid computational intelligence algorithm to the optimization community. This novel hybrid algorithm has hyperheuristic (HH) neighborhood search movements embedded into a recently introduced migrating birds optimization (MBO) algorithm. Therefore, it is called HHMBO. Second, it gives the necessary mathematical model for a shift scheduling problem of a manufacturing company defined by including the fairness perspective, which is typically ignored especially in manufacturing industry. Therefore, we call this complex optimization problem fairness oriented integrated shift scheduling problem (FOSSP). HHMBO is applied on FOSSP and is compared with the well-known simulated annealing, hyperheuristics, and classical MBO algorithms through extended computational experiments on several synthetic datasets. Experiments demonstrate that the new hybrid computational intelligence algorithm is promising especially for large sized instances of the specific problem defined here. HHMBO has a high exploration capability and is a promising technique for all optimization problems. To justify this assertion, we applied HHMBO to the well-known quadratic assignment problem (QAP) instances from the QAPLIB. HHMBO was up to 14.6% better than MBO on converging to the best known solutions for QAP benchmark instances with different densities. We believe that the novel hybrid method and the fairness oriented model presented in this study will give new insights to the decision-makers in the industry as well as to the researchers from several disciplines.