Extraction of titanium from Ti-doped seaside magnetite concentrate in HCl media


Creative Commons License

Uzun Kart E., Kırman M.

Gospodarka Surowcami Mineralnymi-Mineral Resources Management, cilt.37, sa.4, ss.79-96, 2021 (SCI-Expanded)

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 37 Sayı: 4
  • Basım Tarihi: 2021
  • Dergi Adı: Gospodarka Surowcami Mineralnymi-Mineral Resources Management
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, ABI/INFORM
  • Sayfa Sayıları: ss.79-96
  • Marmara Üniversitesi Adresli: Evet

Özet

The purpose of the present study was to extract high added value titanium from Ti-doped Seaside Magnetite Concentrated (Ti-SMC), which has a high potential reserve for Ti-Fe with 4–6% Ti, 50–52% Fe, 1–2% Al, and 1–2% Mg content by applying innovative, economical, environmentally friendly methods. Agitaion HCl leaching was applied to the Ti-SMC sample at different leaching temperatures (25–50–75–90°C), at acid concentrations (8–10–12 N), and leaching times (30–60–120–240 min) in atmospheric conditions. After the leaching experiments under the indicated conditions, the optimization of the leaching experiments was determined with Ti% recovery that dissoluted by elemental analysis, and the titanium recovery values reached the maximum value with increased leaching time at 50°C and 10 N HCl acid concentration; and 65% Ti was recovered in 30 minutes, 67% in 60 minutes, 74% in 120 minutes, and 82% Ti in 240 minutes. For Ti-SMC, leaching was carried out at 50°C leaching temperature and at 10 N acid concentration for 480 minutes, and a 92% Ti extraction value was achieved. According to the extraction results of all leaching experiments, the leaching temperature of 50°C, the acid concentration of 10 N, and the leaching time of 480 minutes were determined as the optimum conditions. In this study, it was emphasized that this resource is a potential reserve, which has not been used as a source before, with 92% Ti extraction with atmospheric acid leaching, which is an environmentally friendly method, consuming less energy than Ti-SMC, which is difficult and expensive to extract with traditional methods.