AI-Driven Optimization of the Filling Process: A Comparison of Reinforcement Learning Methods


Emeksiz Ö. S., Maşazade E., Selim S.

2025 33rd Signal Processing and Communications Applications Conference (SIU), İstanbul, Türkiye, 25 - 28 Haziran 2025, ss.1-4, (Tam Metin Bildiri)

  • Yayın Türü: Bildiri / Tam Metin Bildiri
  • Doi Numarası: 10.1109/siu66497.2025.11111883
  • Basıldığı Şehir: İstanbul
  • Basıldığı Ülke: Türkiye
  • Sayfa Sayıları: ss.1-4
  • Marmara Üniversitesi Adresli: Evet

Özet

This study proposes an artificial intelligence-based approach to overcome the limitations of traditional PID controllers in the control of industrial filling processes. The precision requirements of the filling process can be affected by variables such as material type, temperature, and flow rate, which may cause classical control methods to be inadequate. Therefore, a dynamic and data-driven control model has been developed using reinforcement learning (RL) methods. Monte Carlo (MC), Temporal Difference (TD), and Q-Learning methods have been compared, and experimental analyses have been conducted to determine the most effective strategy. Simulation results have demonstrated that the MC method is more suitable for process modeling, and the optimal transition points between coarse and fine feeding in the filling process have been identified.