Estimation in the partially nonlinear model by continuous optimization


Yerlikaya-Ozkurt F., Taylan P., TEZ M.

JOURNAL OF APPLIED STATISTICS, cilt.48, sa.13-15, ss.2826-2846, 2021 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 48 Sayı: 13-15
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1080/02664763.2020.1864816
  • Dergi Adı: JOURNAL OF APPLIED STATISTICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, ABI/INFORM, Aerospace Database, Business Source Elite, Business Source Premier, CAB Abstracts, Veterinary Science Database, zbMATH
  • Sayfa Sayıları: ss.2826-2846
  • Anahtar Kelimeler: Nonlinear model, nonparametric regression, estimation, B-spline, continuous optimization, FINANCE
  • Marmara Üniversitesi Adresli: Evet

Özet

A useful model for data analysis is the partially nonlinear model where response variable is represented as the sum of a nonparametric and a parametric component. In this study, we propose a new procedure for estimating the parameters in the partially nonlinear models. Therefore, we consider penalized profile nonlinear least square problem where nonparametric components are expressed as a B-spline basis function, and then estimation problem is expressed in terms of conic quadratic programming which is a continuous optimization problem and solved interior point method. An application study is conducted to evaluate the performance of the proposed method by considering some well-known performance measures. The results are compared against parametric nonlinear model.