Transition from microscale-faceted structures to ultra-dense GaN nanowires


Teker K. , Oxenham J. A.

2010 MRS Fall Meeting, Boston, MA, Amerika Birleşik Devletleri, 29 Kasım - 03 Aralık 2010, cilt.1302, ss.31-36 identifier

  • Cilt numarası: 1302
  • Doi Numarası: 10.1557/opl.2011.214
  • Basıldığı Şehir: Boston, MA
  • Basıldığı Ülke: Amerika Birleşik Devletleri
  • Sayfa Sayıları: ss.31-36

Özet

Creation of nanoscale building blocks with various sizes and shapes are critical for the progress of nanotechnology. The synthesis of GaN nanowires by chemical vapor deposition (CVD) using Ga and NH3 as source materials on SiO2/Si substrate was systematically studied. Various types of catalyst materials, including gold (film and nanoparticle), nickel (film and nanoparticle), silver, cobalt and iron, have been used. The growth runs have been carried out at temperatures between 800 and 1100°C under two different carrier gases; H2 and Ar. Initial growth runs using Ar as carrier gas resulted in microscale-faceted nanostructures and short nanorods regardless of the growth temperature or reactor pressure. We have successfully achieved ultra-dense interwoven long nanowires using hydrogen as carrier gas at 1100°C. In fact, the yield has been very high for both gold and nickel catalysts. It should be emphasized that combination of high-temperature and hydrogen has resulted in ultra-dense interwoven long GaN nanowires. These results suggest a radical change in growth kinetics at high temperatures in the presence of H2. The GaN nanowire diameters are in the range of 15 nm to 50 nm and lengths up to hundred microns. The grown nanowires have been characterized by scanning electron microscopy (SEM with EDS), atomic force microscopy (AFM), x-ray diffraction (XRD), and transmission electron microscopy (TEM). © 2011 Materials Research Society.