Bentonite-based sodium alginate/ dextrin cross-linked poly (acrylic acid) hydrogel nanohybrids for facile removal of paraquat herbicide from aqueous solutions


Thakur S., Verma A., Raizada P., GÜNDÜZ O., Janas D., Alsanie W. F., ...Daha Fazla

Chemosphere, cilt.291, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 291
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1016/j.chemosphere.2021.133002
  • Dergi Adı: Chemosphere
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Artic & Antarctic Regions, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, EMBASE, Environment Index, Food Science & Technology Abstracts, Geobase, Greenfile, MEDLINE, Metadex, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Anahtar Kelimeler: Sodium alginate, Dextrin, Bentonite, Hydrogel composite, Paraquat removal, METHYLENE-BLUE, EFFICIENT REMOVAL, NANOCOMPOSITE SYNTHESIS, ADSORPTION, WATER, ADSORBENT, DYE, CELLULOSE, DEXTRIN, ANTIOXIDANT
  • Marmara Üniversitesi Adresli: Evet

Özet

© 2021 Elsevier LtdRemoval of hazardous herbicides from the aqueous solution is critical for overcoming health-related issues across the wider population. In the current work, we have prepared sodium alginate (SAlg), dextrin, and acrylic acid (AA) based cross-linked hydrogels, composed of bentonite incorporated in the biocompatible hydrogel matrix. This hydrogel composite can remove highly toxic herbicide paraquat (PQ). As-synthesised hydrogel (SAlg/dextrin-cl-PAA) and hydrogel composite (SAlg/dextrin-cl-PAA/bentonite) were further analysed by infra-red spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and thermogravimetric analysis (TGA/DSC). For the first time, PQ adsorption onto sodium and dextrin-based hydrogel was also evaluated. The measured highest removal capacities were 76.923 and 90.909 mg g−1 for the SAlg/dextrin-cl-PAA and SAlg/dextrin-cl-PAA/bentonite, respectively. Pseudo-second-order (PSO) and Langmuir isotherm models have shown to be best suited for accurately describing the adsorption mechanism. A thermodynamics study verified that the adsorption of PQ on adsorbents is spontaneous, favourable and exothermic. Moreover, reusability analysis shows that the adsorbents possess good reproducibility even after six successive cycles. The adsorption results demonstrate that the synthesised adsorbents are very efficient for removing herbicides (PQ) from wastewater.