DNA and hemoglobin binding activities: Investigation of coumarin-thiosemicarbazone hybrids


Çelik E., Meletli F., Özdemir M., Köksoy B., Danış Ö., Yalçın B.

Bioorganic Chemistry, cilt.153, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 153
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1016/j.bioorg.2024.107857
  • Dergi Adı: Bioorganic Chemistry
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Chimica, EMBASE, Veterinary Science Database
  • Anahtar Kelimeler: Coumarin, DNA binding, Hemoglobin binding, In silico, Thiosemicarbazone
  • Marmara Üniversitesi Adresli: Evet

Özet

Coumarin and coumarin-thiosemicarbazone hybrids were synthesized and characterized by various techniques such as FT-IR, 1H NMR, 13C NMR, MALDI-TOF-MS spectroscopy, and single crystal X-Ray diffractometer (XRD). The photochemical and photophysical properties of the compounds, such as solvatochromism, solubility, and chemical reactivity, were analyzed using UV–vis spectroscopy in different solvents. Due to the potential biological activities of the synthesized compounds, their binding affinity and mechanisms with calf thymus DNA (ct-DNA) and bovine hemoglobin (BHb) were determined using several useful spectrophotometric and theoretical approaches such as UV–vis absorption and fluorescence spectroscopy, molecular docking, and density functional theory (DFT). The experimental results showed that the compounds exhibited strong binding interactions with DNA and BHb. Additionally, the compounds demonstrated predominantly binding modes, such as intercalation and groove binding with DNA and π–π stacking interactions with BHb. To better understand the thermodynamics of these interactions, quenching constants, binding constants, and Gibbs free energy changes (ΔG°) were calculated. Molecular docking and DFT results supported the experimental data regarding the binding affinity and mechanisms of the compounds to DNA and BHb. Overall, this comprehensive study on coumarin and coumarin-thiosemicarbazone hybrids provides valuable insights into their interaction mechanisms with critical biomolecules, highlighting their potential in therapeutic applications as multifunctional agents.