Homozygous IL37 mutation associated with infantile inflammatory bowel disease


Creative Commons License

Zhang Z. Z., Zhang Y., He T., Sweeney C. L., Baris S., Karakoc-Aydiner E., ...Daha Fazla

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, cilt.118, sa.10, 2021 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 118 Sayı: 10
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1073/pnas.2009217118
  • Dergi Adı: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Agricultural & Environmental Science Database, Animal Behavior Abstracts, Aquatic Science & Fisheries Abstracts (ASFA), Artic & Antarctic Regions, BIOSIS, CAB Abstracts, Chemical Abstracts Core, EconLit, EMBASE, Food Science & Technology Abstracts, INSPEC, Linguistic Bibliography, MathSciNet, MEDLINE, Pollution Abstracts, Psycinfo, Public Affairs Index, Veterinary Science Database, zbMATH, DIALNET
  • Anahtar Kelimeler: immunodeficiency, inflammatory bowel disease, IBD, IL37, VEO-IBD, IL-37, EXPRESSION, SIGIRR
  • Marmara Üniversitesi Adresli: Evet

Özet

Interleukin (IL)-37, an antiinflammatory IL-1 family cytokine, is a key suppressor of innate immunity. IL-37 signaling requires the heterodimeric IL-18R1 and IL-1R8 receptor, which is abundantly expressed in the gastrointestinal tract. Here we report a 4-mo-old male from a consanguineous family with a homozygous loss-of-function IL37 mutation. The patient presented with persistent diarrhea and was found to have infantile inflammatory bowel disease (I-IBD). Patient cells showed increased intracellular IL-37 expression and increased proinflammatory cytokine production. In cell lines, mutant IL-37 was not stably expressed or properly secreted and was thus unable to functionally suppress proinflammatory cytokine expression. Furthermore, induced pluripotent stem cell-derived macrophages from the patient revealed an activated macrophage phenotype, which is more prone to lipopolysaccharide and IL-1 beta stimulation, resulting in hyperinflammatory tumor necrosis factor production. Insights from this patient will not only shed light on monogenic contributions of I-IBD but may also reveal the significance of the IL-18 and IL-37 axis in colonic homeostasis.