Structure, microstructure, and ESR properties of concentration-dependent Zn1-xMnxO nanoparticles


BOYRAZ C., Perez M. S., Arda L.

Ceramics International, cilt.50, sa.23, ss.50855-50866, 2024 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 50 Sayı: 23
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1016/j.ceramint.2024.09.432
  • Dergi Adı: Ceramics International
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Chemical Abstracts Core, Communication Abstracts, Compendex, INSPEC, Metadex, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.50855-50866
  • Anahtar Kelimeler: Defects, ESR properties, Microstrain, Nanoparticles, Sol-gel method, Stress, Williamson–Hall, ZnO
  • Marmara Üniversitesi Adresli: Evet

Özet

In this study, the estimated stress, strain, and crystallite sizes of different Mn-doped ZnO nanoparticles were calculated using the Williamson-Hall method and compared with the values obtained from the Debye-Scherrer formula. Moreover, defects, and magnetic properties of Mn-doped ZnO nanoparticles at different concentrations were investigated. The sol-gel method was used to synthesize nanoparticles. The X-ray diffraction and Rietveld analysis results confirm that the desired structure is formed and that no secondary phase is present up to an Mn concentration of x = 0.2. In and out of plane lattice parameters, cell volumes, bond length, atomic locality, and dislocation density (δ) were clarified. The grain size of the concentration-dependent samples was provided by scanning electron microscope. Photoluminescence (PL) spectra exhibited ultraviolet emission along with a broad band encompassing violet, blue, and red regions, attributed to defect-related and excitonic emissions. These emissions were notably influenced by synthesis conditions and doping elements and ratios. Electron spin resonance properties of the concentration-dependent samples were analyzed to figure out the g-factor through line widths of pike-to-pike (ΔHPP) of ESR spectra. Mn-doped ZnO nanoparticles exhibited ferromagnetism at room temperature.