Extremophilic Natrinema versiforme Against Pseudomonas aeruginosa Quorum Sensing and Biofilm


Basaran T. I., Berber D., Gokalsin B., Tramice A., Tommonaro G., Abbamondi G. R., ...Daha Fazla

FRONTIERS IN MICROBIOLOGY, cilt.11, 2020 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 11
  • Basım Tarihi: 2020
  • Doi Numarası: 10.3389/fmicb.2020.00079
  • Dergi Adı: FRONTIERS IN MICROBIOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, BIOSIS, CAB Abstracts, EMBASE, Veterinary Science Database, Directory of Open Access Journals
  • Anahtar Kelimeler: Pseudomonas aeruginosa, extremophiles, quorum sensing, biofilm, antivirulence, Natrinema versiforme, N-ACYLHOMOSERINE LACTONASE, THERMOPHILIC BACTERIUM, HALOPHILIC ARCHAEON, VIRULENCE, IDENTIFICATION, STRATEGIES, SYSTEMS, DRUGS, ACID
  • Marmara Üniversitesi Adresli: Evet

Özet

Pseudomonas aeruginosa is an opportunistic pathogen that causes high morbidity and mortality rates due to its biofilm form. Biofilm formation is regulated via quorum sensing (QS) mechanism and provides up to 1000 times more resistance against conventional antibiotics. QS related genes are expressed according to bacterial population density via signal molecules. QS inhibitors (QSIs) from natural sources are widely studied evaluating various extracts from extreme environments. It is suggested that extremely halophilic Archaea may also produce QSI compounds. For this purpose, we tested QS inhibitory potentials of ethyl acetate extracts from cell free supernatants and cells of Natrinema versiforme against QS and biofilm formation of P. aeruginosa. To observe QS inhibition, all extracts were tested on P. aeruginosa lasB-gfp, rhlA-gfp, and pqsA-gfp biosensor strains and biofilm inhibition was studied using P. aeruginosa PAO1. According to our results, QS inhibition ratios of cell free supernatant extract (CFSE) were higher than cell extract (CE) on las system, whereas CE was more effective on rhl system. In addition, anti-biofilm effect of CFSE was higher than CE. Structural analysis revealed that the most abundant compound in the extracts was trans 4-(2-carboxy-vinyl) benzoic acid.