Synthesis by UV-curing and characterisation of polyurethane acrylate-lithium salts-based polymer electrolytes in lithium batteries


Ugur M. H. , KILIÇ H. , Berkem M. L. , Gungor A.

CHEMICAL PAPERS, vol.68, no.11, pp.1561-1572, 2014 (Journal Indexed in SCI) identifier identifier

  • Publication Type: Article / Article
  • Volume: 68 Issue: 11
  • Publication Date: 2014
  • Doi Number: 10.2478/s11696-014-0611-1
  • Title of Journal : CHEMICAL PAPERS
  • Page Numbers: pp.1561-1572

Abstract

UV-cured caprolactone-based polyurethane acrylate (PUA) polymer blend electrolytes were prepared and characterised. To develop polymer electrolytes suited to ambient temperature, an ionically-conductive and reliable polymer electrolyte based on urethane acrylate resins synthesised from a fluorine-containing di-functional oligomer 6F ethoxylated diacrylate, a di-functional reactive diluent 1,6-hexanediol diacrylate for adjusting the viscosity, and a radical photo-initiator doped with a mixture of lithium salts were used. Free-standing flexible electrolyte films were prepared by UV-curing via free-radical photopolymerisation. The performance of the lithium polymer cell system (Li/PE(F4)/LiCoO2) was determined by electrochemical impedance spectroscopy, cyclic voltammetry, a galvanostatic recurrent differential pulse, chronocoulometry and chronoamperometry. The electrolyte with optimal amounts of fluorine-containing oligomer and optimal salt mixture content exhibited enhanced conductivity, showing a conductivity of 1.00 x 10(-4) S cm(-1) at ambient temperature. The specific capacity, specific energy and specific power of a Li/PE(F4)/LiCoO2 cell were also determined.