APPLIED SCIENCES, cilt.14, sa.21, ss.1-28, 2024 (SCI-Expanded)
Considering the presence of airborne viruses, there is a need for renovation in refuse chutes, regarded as the first step in recycling household waste in buildings. This study aimed to revise the design of existing refuse chutes in light of the challenging experiences in waste management and public health during the coronavirus pandemic. This research primarily focused on the risks posed by various types of coronaviruses, such as the novel coronavirus (COVID-19) and acute respiratory syndrome (SARS and SARS-CoV), on stainless steel surfaces, with evidence of their survival under certain conditions. Refuse chutes are manufactured from stainless steel to resist the corrosive effects of waste. In examining the existing studies, it was observed that Casanova et al. and Chowdhury et al. found that the survival time of coronaviruses on stainless steel surfaces decreases as the temperature increases. Based on these studies, mechanical revisions have been made to the sanitation system of the refuse chute, thus increasing the washing water temperature. Additionally, through mechanical improvements, an automatic solution spray entry is provided before the intake doors are opened. Furthermore, to understand airflow and clarify flow parameters related to airborne infection transmission on residential floors in buildings equipped with refuse chutes, a computational fluid dynamics (CFD) analysis was conducted using a sample three-story refuse chute system. Based on the simulation results, a fan motor was integrated into the system to prevent pathogens from affecting users on other floors through airflow. Thus, airborne pathogens were periodically expelled into the atmosphere via a fan shortly before the intake doors were opened, supported by a PLC unit. Additionally, the intake doors were electronically interlocked, ensuring that all other intake doors remained locked while any single door was in use, thereby ensuring user safety. In a sample refuse chute, numerical calculations were performed to evaluate parameters such as the static suitability of the chute body thickness, static compliance of the chute support dimensions, chute diameter, chute thickness, fan airflow rate, ventilation duct diameter, minimum rock wool thickness for human contact safety, and the required number of spare containers. Additionally, a MATLAB code was developed to facilitate these numerical calculations, with values optimized using the Fmincon function. This allowed for the easy calculation of outputs for the new refuse chute systems and enabled the conversion of existing systems, evaluating compatibility with the new design for cost-effective upgrades. This refuse chute design aims to serve as a resource for readers in case of infection risks and contribute to the literature. The new refuse chute design supports the global circular economy (CE) model by enabling waste disinfection under pandemic conditions and ensuring cleaner source separation and collection for recycling. Due to its adaptability to different pandemic conditions including pathogens beyond coronavirus and potential new virus strains, the designed system is intended to contribute to the global health framework. In addition to the health measures described, this study calls for future research on how evolving global health conditions might impact refuse chute design.