Process control using genetic algorithm and ant colony optimization algorithm

ERGÜZEL T. T. , Akbay E.

JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, vol.26, no.1, pp.501-516, 2014 (Journal Indexed in SCI) identifier identifier

  • Publication Type: Article / Article
  • Volume: 26 Issue: 1
  • Publication Date: 2014
  • Doi Number: 10.3233/ifs-131003
  • Page Numbers: pp.501-516


Artificial life uses biological knowledge and techniques to solve different engineering, management, control and computational problems. Natural systems teach us that very simple individual organisms can form systems capable of performing highly complex tasks by dynamically interacting with each other. In this study, artificial life based approaches are handled and incorporated to enable a real-time water level control. The process was first modelled using NARX type Artificial Neural Network. A fuzzy controller was then attached to the model. For a better performance, fuzzy controller membership function boundary values and action values were optimized simultaneously. The optimization process was performed using genetic algorithm and ant colony optimization algorithm, respectively. Finally, the performance of the controllers was discussed further by considering the system outputs. The developed structure replaces the tedious process of trial-and-error for better combination of fuzzy parameters and can settle the problem of designing fuzzy controller without an expert's experience.