Data-Driven Predictive Control of Exoskeleton for Hand Rehabilitation with Subspace Identification


Creative Commons License

Kaplanoglu E., AKGÜN G.

SENSORS, cilt.22, sa.19, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 22 Sayı: 19
  • Basım Tarihi: 2022
  • Doi Numarası: 10.3390/s22197645
  • Dergi Adı: SENSORS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Biotechnology Research Abstracts, CAB Abstracts, Communication Abstracts, Compendex, EMBASE, INSPEC, MEDLINE, Metadex, Veterinary Science Database, Directory of Open Access Journals, Civil Engineering Abstracts
  • Anahtar Kelimeler: DDPC, hand rehabilitation, subspace identification, DESIGN, SYSTEM
  • Marmara Üniversitesi Adresli: Evet

Özet

This study proposed a control method, a data-driven predictive control (DDPC), for the hand exoskeleton used for active, passive, and resistive rehabilitation. DDPC is a model-free approach based on past system data. One of the strengths of DDPC is that constraints of states can be added to the controller while performing the controller design. These features of the control algorithm eliminate an essential problem for rehabilitation robots in terms of easy customization and safe repetitive rehabilitation tasks that can be planned within certain constraints. Experiments were carried out with a designed hand rehabilitation system under repetitive and various therapy tasks. Real-time experiment results demonstrate the feasibility and efficiency of the proposed control approach to rehabilitation systems.