Investigation of nitrogen converters in membrane bioreactor


Ozdemir B., MERTOĞLU B. , Yapsakli K. , Aliyazicioglu C., Saatci A., Yenigun O.

JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART A-TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING, cilt.46, ss.500-508, 2011 (SCI İndekslerine Giren Dergi) identifier identifier identifier

  • Cilt numarası: 46 Konu: 5
  • Basım Tarihi: 2011
  • Doi Numarası: 10.1080/10934529.2011.551733
  • Dergi Adı: JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART A-TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING
  • Sayfa Sayıları: ss.500-508

Özet

In this study, the activity and diversity of nitrogen converters, ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), ammonia-oxidizing archaea (AOA) and Anammox bacteria in a pilot-scale membrane bioreactor (MBR) were investigated and monitored using amoA and 16S rDNA-based molecular tools. The pilot-scale MBR (100 m(3)/day) was located inside the full-scale Pasakoy Advanced Wastewater Treatment Plant (WWTP), and operated for approximately 5 months without sludge purge. During 148 days of operation, volatile suspended solids (VSS) concentration increased from 2,454 mg/L to 10,855 mg/L and the average organic carbon and ammonia nitrogen removal rates were 92% and 99%, respectively. Real-time PCR results indicated that the fraction of AOB increased from 2.94% to 4.05% when VSS concentration reached to 3,750 mg/L throughout 148 days of operation. At higher VSS concentrations, the fraction of AOB declined gradually to 1.15% while the fraction of Nitrospira population was varied between 8.23 and 13.01%. However, significant change or any positive and negative correlations between VSS concentration and Nitrospira population were not observed in this period. The phylogenetic analysis revealed that MBR harbored diverse AOB community which was related to the Nitrosomonas and Nitrosospira lineage. Candidatus Nitrospira defluvii was the only detected NOB in this study.