Hexagonal cell graphs of the normalizer with signature (2, 6, infinity)


YAZICI GÖZÜTOK N., GÜLER B. Ö.

HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, cilt.51, sa.3, ss.666-679, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 51 Sayı: 3
  • Basım Tarihi: 2022
  • Doi Numarası: 10.15672/hujms.824436
  • Dergi Adı: HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, zbMATH, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.666-679
  • Anahtar Kelimeler: normalizer, suborbital graph, hexagon, CONGRUENCE SUBGROUPS, MAPS
  • Marmara Üniversitesi Adresli: Hayır

Özet

In this paper, we investigate suborbital graphs G(u,n) of the normalizer Gamma(B)(N) of Gamma(0)(N) in PSL(2, R) for N = 2(alpha)3(beta), where alpha = 0, 2, 4, 6 and beta = 1, 3. In each of these cases, the normalizer becomes a triangle group and the graph arising from the action of the normalizer contains hexagonal circuits. In order to obtain graphs, we first define an imprimitive action of Gamma(B)(N) on (Q) over cap using the group H-B(N) and then we obtain some properties of the graphs arising from this action.