Thermoresponsive hydrogels based on renewable resources


Isikci Koca E., Bozdag G., Cayli G., KAZAN D., Cakir Hatir P.

JOURNAL OF APPLIED POLYMER SCIENCE, cilt.137, sa.28, 2020 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 137 Sayı: 28
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1002/app.48861
  • Dergi Adı: JOURNAL OF APPLIED POLYMER SCIENCE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, PASCAL, Aerospace Database, Applied Science & Technology Source, Biotechnology Research Abstracts, Chimica, Communication Abstracts, Compendex, INSPEC, Metadex, Civil Engineering Abstracts
  • Anahtar Kelimeler: biomedical applications, biomaterials, biopolymers and renewable polymers, BACTERIAL CELLULOSE PRODUCTION, OIL-BASED POLYURETHANE, CASTOR-OIL, RECENT TRENDS
  • Marmara Üniversitesi Adresli: Evet

Özet

This work aims to synthesize novel thermoresponsive hydrogels from renewable resources, bacterial cellulose (BC), and castor oil (CO), and to investigate the effect of CO on physical and thermal behaviors of BC/Poly(N-isopropylacrylamide) (PNIPAM) hydrogels. The structural properties of the hydrogels are analyzed by Fourier-transform infrared (FTIR) spectroscopy. Differential scanning calorimeter (DSC) technique and thermogravimetric analysis (TGA) are also performed to examine the thermal properties of the hydrogels. The morphological differences of the hydrogels are analyzed by scanning electron microscope (SEM). The thermoresponsive performances of the hydrogels are examined by swelling and deswelling behaviors. The hydrogel with CO is found to be more sensitive to temperature changes than the one without CO. Deswelling study demonstrates 91 and 25% of water loss for hydrogels with and without CO, respectively. The present study shows a novel approach to synthesize thermoresponsive hydrogels with renewable resources for biomedical applications. (c) 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 137, 48861.