A new alternative estimation method for Liu-type logistic estimator via particle swarm optimization: an application to data of collapse of Turkish commercial banks during the Asian financial crisis


Sancar N., İnan D.

JOURNAL OF APPLIED STATISTICS, cilt.48, sa.13-15, ss.2499-2514, 2021 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 48 Sayı: 13-15
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1080/02664763.2020.1837085
  • Dergi Adı: JOURNAL OF APPLIED STATISTICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, ABI/INFORM, Aerospace Database, Business Source Elite, Business Source Premier, CAB Abstracts, Veterinary Science Database, zbMATH
  • Sayfa Sayıları: ss.2499-2514
  • Anahtar Kelimeler: Logistic Liu-type estimator, ridge logistic estimator, maximum likelihood estimator, multicollinearity, particle swarm optimization, REGRESSION
  • Marmara Üniversitesi Adresli: Evet

Özet

In the existence of multicollinearity problem in the logistic model, some important problems may occur in the analysis of the model, such as unstable maximum likelihood estimator with very high standard errors, false inferences. The Liu-type logistic estimator was proposed as two-parameter estimator to overcome multicollinearity problem in the logistic model. In the existing previous studies, the (k, d) pair in this shrinkage estimator is estimated by two-phase methods. However, since the different estimators can be utilized in the estimation of d, optimal choice of the (k, d) pair provided using the two-phase approaches is not guaranteed to overcome multicollinearity. In this article, a new alternative method based on particle swarm optimization is suggested to estimate (k, d) pair in Liu-type logistic estimator, simultaneously. For this purpose, an objective function that eliminates the multicollinearity problem, provides minimization of the bias of the model and improvement of the model's predictive performance, is developed. Monte Carlo simulation study is conducted to show the performance of the proposed method by comparing it with existing methods. The performance of the proposed method is also demonstrated by the real dataset which is related to the collapse of commercial banks in Turkey during Asian financial crisis.