Brain in metabolic syndrome model: The effect of exercises and caloric restriction


Creative Commons License

Alev-Tuzuner B., Genc-Kahraman N., Ipekci H., Ustundag U. V., AKBAY T., ALTURFAN E. I., ...Daha Fazla

Journal of Research in Pharmacy, cilt.26, sa.5, ss.1352-1362, 2022 (ESCI) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 26 Sayı: 5
  • Basım Tarihi: 2022
  • Doi Numarası: 10.29228/jrp.227
  • Dergi Adı: Journal of Research in Pharmacy
  • Derginin Tarandığı İndeksler: Emerging Sources Citation Index (ESCI), Scopus, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.1352-1362
  • Anahtar Kelimeler: Metabolic syndrome, Brain, Antioxidant, Oxidative stress, Exercise, Caloric restriction, OBESITY
  • Marmara Üniversitesi Adresli: Evet

Özet

© 2022 Marmara University Press.Caloric restriction (CR) and exercise (EX) have impacts on improving metabolic risk factors. This study aimed to investigate the changes in the brain after EX and/or CR in metabolic syndrome (MeS) induced by a high fructose diet in rats. Sprague-Dawley male rats were divided into five groups. Drinking water including 10% fructose solution was given to rats for 12 weeks to develop a MeS rat model. Animals with MeS were submitted to EX and/or CR for 6 weeks. Blood glucose, and brain tissue damage and antioxidant parameters were measured. Brain lipid peroxidation, sialic acid, mucin, fucose levels increased in the MeS group compared to the control (C) group. These parameters reduced significantly in the metabolic syndrome with caloric restriction (MeS+CR) group, and more significantly in the metabolic syndrome with exercise and caloric restriction group (MeS+EXCR), compared to the MeS group. Glutathione levels, superoxide dismutase and catalase activities decreased in the MeS group compared to the C group, increased both in the MeS+CR group, and MeS+EXCR group compared to the MeS group. High fructose diet consumption can lead to brain tissue damage and decreased antioxidant levels were found to be improved best in the MeS+EXCR group.