Self-forming dynamic membrane bioreactor for textile industry wastewater treatment


YURTSEVER A., Basaran E., Ucar D., Sahinkaya E.

SCIENCE OF THE TOTAL ENVIRONMENT, cilt.751, 2021 (SCI-Expanded, Scopus) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 751
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1016/j.scitotenv.2020.141572
  • Dergi Adı: SCIENCE OF THE TOTAL ENVIRONMENT
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Analytical Abstracts, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, EMBASE, Environment Index, Food Science & Technology Abstracts, Geobase, Greenfile, MEDLINE, Metadex, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Anahtar Kelimeler: Dynamic membrane bioreactor, Anaerobic membrane bioreactor, Textile wastewater, Cake layer, Membrane fouling
  • Marmara Üniversitesi Adresli: Hayır

Özet

The robustness of anaerobic dynamic membrane bioreactor (AnDMBR) for synthetic textile wastewater treatment was investigated. Textile wastewater may contain high concentrations of NaCl and sulfate, hence their impact on the AnDMBR performance was investigated in detail. A dynamic membrane was formed on a 20-μm pore sized nylon support layer at a constant flux of around 8 LMH. In the absence of sulfate addition, total and filtered (soluble) COD averaged 96 ± 49 mg/L (91% removal) and 75 ± 35 mg/L (93% removal), respectively. Sulfate addition increased total COD in the permeate to 222 ± 68 mg/L (79% removal). Average SS concentration was lower than 30 mg/L in the permeate although its concentration in the bioreactor reached 10 g/L. Throughout the AnDMBR operation dye removal averaged >97%. Sludge filterability, which was assessed by specific resistance to filtration, supernatant filtration, capillary suction time and viscosity, decreased after sulfate addition. Organic and inorganic matters in the dynamic layer were characterized by SEM-EDS and FTIR analyses.