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PREFACE

FORTRAN was the first widely used high-level programming language, and it continues to be
of great importance in scientific computing. It is an old language, but despite recurrent
predictions of its imminent death, it is still going strong and is likely to continue to do so for
some time. In particular, many engineers and scientists continue to use FORTRAN as their
primary programming language. This is because FORTRAN is particularly well suited for
scientific and technological problems, as well as to other problem areas with a significant
numerical or computationat content.

It is true that the C programming language is superior to FORTRAN 77 and earlier
versions of FORTRAN in a number of ways, and it may have become the preferred language
for many engineers and scientists in the early 1990s. There are, however, numerous
FORTRAN 77 programs in current use in engineering and science. There are also many well-
documented, well-tested, and high quality FORTRAN 77 programs in the published literature.
As a resuit, even for those who prefer to use C or another language when writing new
programs, there is a need to learn FORTRAN--if for nothing eise--just to he able to
understand, and, when deemed useful, to adapt and to utilize such programs.

It should be emphasized that the next version of the language, Fortran 90, contains
many new added features that arguably make it the most suitable language for scientific
computing. Fortran 90, which contains the whole of FORTRAN 77 as a subset, is a powerful
and flexible programming language. Fortran 90's array processing features, for instance, are
considerably more powerful than those of any other programming language.

Fortran 90 is a rich and large language. This is partly due to the fact that it contains
many features which are included for compatibility with earlier versions of the language. A
standard-conforming FORTRAN 66 or FORTRAN 77 program written over 20 to 30 years ago
is also a perfectly valid Fortran 90 program. Considering how quickly almost anything related
to computer hardware and software becomes obsolete, this is a tribute to the longevity of
FORTRAN programs.

One of the advantages of FORTRAN 77 over C has been that it is easier to learn,
because its "mental model” of the computer is much simpler. For example, in FORTRAN 77
the programmer can avoid learning about pointers and memory addresses, while these are
essential in C. Because of this relative simplicity, for many simple yet significant programming
tasks, FORTRAN 77 generally requires much less computer science 'knowledge of the
programmer than C does, and is thus much easier to use.

As noted above, however, Fortran 90 is a large language and, as a result, learning the
whole of Fortran 90 is not as easy. The primary audience to this book has been the freshman
engineering students with no prior programming experience. | think that it is not possible to
teach all of Fortran 90 to these students satisfactorily within a single semester. Therefore a
proper subset of Fortran 90 must be covered in such a single-semester introductory course.
Here an instructor has two choices: (1) Teach FORTRAN 77 as fully as possible and introduce
some of the important new features of Fortran 90 to the extent that time allows. (2) Teach a
subset of Fortran 90, such as the F programming language, which contains most of the new



and modern features of Fortran 90, but not certain older features of FORTRAN 77 which were
retained in Fortran 90 for backward compatibility. Most authors and instructors have adopted
the latter approach.

I have decided to continue to teach FORTRAN 77 in the class and to present it
separately in this book (by introducing Fortran 90 in the last chapter) for the following reasons:
(1) Itis possible to write efficient and structured programs using FORTRAN 77.

(2) FORTRAN 77 is relatively easy to learn and use.

(3) Many engineers and scientists continue to develop new code using FORTRAN 77 despite
the availability of commercial Fortran 90/95 compilers for essentially all types of computers.
(4) There are several widely available FORTRAN 77 compilers.

(5) FORTRAN 77 programs are also valid Fortran 90 programs, and they can be compiled
using modern Fortran 90/95 compilers.

(6) FORTRAN 77 is a subset of Fortran 90, and learning FORTRAN 77 means also leamning a
significant fraction of Fortran 80. Such an effort, therefore, is not wasted in any way.

(7) The engineering and scientific literature of the last 30 years is replete with FORTRAN 66
and FORTRAN 77 programs. Ability to understand, use, modify, adapt, and maintain such
older code can be expected to remain a valuable skill for years to come.

The engineering student is, of course, strongly encouraged to continue increasing
his/her knowledge and skilis by learning and adopting Fortran 90/95 (and the next expected
version, Fortran 2000) as well as some of the othér widely-used programming languages and
software tools such as C, Java, Mathcad, Mathematica, etc.

All of the FORTRAN 77 programs given in this book were tested using at least one of
the following two compilers: (i) Microsoft FORTRAN PowerStation Version 1.0a. (i) Lahey
Computer Systems’ FORTRAN 77 Compiler Version 4.0. Many programs were tested with
both compilers. The Fortran 90 programs presented in Chapter 7 were tested using Microsoft
Fortran PowerStation Version 4.0.

There are several books that contain comprehensive information about FORTRAN. it
would be very difficult to write a new book that betters the existing textbooks. My goal in
writing this book was very much unpretentious: | aimed at an easy-to-read textbook on
FORTRAN, one that beginning students can be asked to read from cover to cover, and one
from which they can learn FORTRAN rather quickly. My approach has been, for the most part,
to teach by example. | have tried to avoid “real engineering applications” which tend to
distract the reader from the main point being made. The examples are, theréfore, quite simple
and short. Many subtle details of the language, however, are thoroughly covered and
exemplified. You are strongly encouraged to type and run each program in the book, and fo
compare the results so obtained with those given in the book. In this way, you will quickly
become familiar with the process of typing in, compiling, and running FORTRAN programs.

Omer Akgiray
Marmara University, Goztepe, istanbul
March 2000
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CHAPTER 1: BASIC FEATURES OF FORTRAN

1.1 Introduction

A digital electronic computer is, at the most basic level, a collection of electronic and
electromechanical components and devices. What sets a computer apart from other
machines which may be built from similar component parts are two characteristics:
memory and capability to be programmed. That part of a computer in which
information is stored is referred to as the memory. There are two main types of
information stored in a computer's memory, namely, programs and data. A program
is a set of instructions which the computer is to obey. Data (numbers, words, sound,
etc.) are processed by the computer in a way defined by a program. A programming
language is required to program a computer.

The most basic programming language is machine language. A program
written in the machine language of a computer is a collection of very detailed, cryptic
instructions that control the computer’s internal circuitry. This is the native tongue of
the computer and is the only language that the computer actually understands. In the
earliest days of computers, to program a computer meant to write programs in the
machine language of that computer. There are two main disadvantages to using a
machine language: First, machine languages are very cumbersome to work with, and
second, every type of computer has its own machine language. Thus, a machine
language program written for one type of computer cannot be used on another type
of computer without significant alterations.

Machine language instructions are usually written in binary code (i.e. strings
of O's and 1's), and each statement corresponds to one machine action. Higher in
the hierarchy of programming languages are assembly languages. Each statement
of an assembly language program corresponds to one machine language statement,
but the statements themselves are written in symbolic code that is easier for people
to read. As an hypothetical example, the following three instructions constitute a tiny
machine language program:

000101000000000000000000000001100100
000100000000000000000000000001100101
000110000001000000000000000001100110
The same three steps written in an assembly language may look like
CLA 100
ADD 101
STO 102
where c1.2 and sTo stand for “clear accumulator and add” and “store,” respectively.
The decimal numbers 100, 101, and 102 (and the corresponding binary numbers



1100100, 1100101, and 1100110") refer to storage locations in the memory. The first
step (of both programs) causes the number in the storage location 100 to be brought
to the accumulator. (Roughly speaking, the accumulator is the storage location
where a computer stores the result of an arithmetic operation.) In the second step,
the number in location 101 is added to the number that has just been placed into the
accumulator. The result of this addition is stored in the accumulator. In the third step,
the number currently present in the accumulator (which is the sum of the numbers in
storage locations 100 and 101) is stored in the storage location 102. A programmer
can usually assign names (such as 2, B, and ¢) to memory locations such as 100,
101, and 102. The program above may in that case be written as follows:

CLA A

ADD B

STO C
An assembler program is required to translate assembly language programs into
machine language instructions.

A high-level language is a computer programming language that allows
people to write programs without having to understand the inner-workings of a
computer. FORTRAN, BASIC, COBOL, Pascal, Ada, C, C++, and Java are examples
of high-level languages. A machine language is at the lowest level, since machine
language programming requires detailed knowledge of the computer’s inner-
workings. An assembly language is at a slightly higher level than a machine
language. Assembly language programs are lengthy and hard to read, and the same
assembly language cannot be used on different types of computers. A high-level
language, on the other hand, resembles an everyday language (English) and may be
used on different types of computer systems. Furthermore, while a statement of an
assembly language program corresponds to exactly one machine language
statement, a single statement written using a high-level language may correspond to
several machine-level instructions. For example, to add the values stored in the
memory locations named 2 and B, and to store the result in the memory location
named c, a single FORTRAN statement is used:

C=A+B

A high-level language program must first be translated into machine language
instructions before the program can be executed. A special program, namely a
compiler, is employed to carry out this translation. The high-level language program
is called the source program, and the translation is referred to as the object
program.

! Calculation of the decimal code corresponding to a binary number is best explained with an example.
Consider the binary code 1100100, Then 1x2°+1x2°+0x2*+0x2’+1x2*+0x2'+0x2° = 100 is its decimal
equivalent. Verify that the decimal equivalents of 1100101 and 1100110 are 101 and 102, respectively.



A high-level language program can be run on any type of computer provided
that a compiler exists for that type of computer. Thus, in high-level languages,
differences between different types of computers are handled by the compiler, which
is specially written for each type of machine. Many computer manufacturers provide
compilers for the commonly used high-level languages such as FORTRAN and C.
For “IBM-compatible” PC’s, several compilers (developed by different software
companies) for each such language are commercially available.

FORTRAN (short for “IBM Mathematical FORmula TRANslation System”) was
the first widely used high-level programming language. The FORTRAN programming
language was developed by IBM (International Business Machines Corporation) in
the 1950s, and its first commercial version (FORTRAN I) was announced in 1957.
This was followed a year later by FORTRAN 1I (1958), an improved version of the
language.

While FORTRAN II established the FORTRAN language among a large body
of users, its successor FORTRAN III (1958) was never released to the public. It
made it possible to use assembly language code right in the middle of FORTRAN
code. This allowed writing more efficient programs, but the advantages of a high-
level programming language are lost (e.g. portability, ease of use).

The general spread of the FORTRAN language was due, in part, to IBM's
free distribution of its FORTRAN compilers with its mainframe computers. In the
meanwhile, other manufactures started to write compilers for FORTRAN, and by
1963 there were more than 40 different FORTRAN compilers in existence. This
development was of great importance, because once a program had been written for
one computer using FORTRAN, it could be moved to another computer with little or
no change.

FORTRAN 1II released by IBM and other manufacturers’s FORTRAN
compilers, however, contained certain machine-dependent features. Furthermore,
there were some incompatibilities between different compilers. In response to these
problems, IBM developed and released FORTRAN IV (in 1962) which did away with
the machine-dependent features of FORTRAN IL This new version, FORTRAN IV,
was highly successful because programs written in FORTRAN IV were almost totally
independent of the type of computer on which they were to be run. Such programs
could easily be transferred to another type of computer, as long as that computer
had a FORTRAN IV compiler.

The next significant development was the definition of FORTRAN 66 (USASI
standard FORTRAN, March 1966) which was based largely on IBM’s FORTRAN V.
FORTRAN 66 was the first high-lével language standard in the world.



Standard FORTRAN 77 (ANSI standard developed in 1977, approved in April
1978)? replaced the older FORTRAN 66. The FORTRAN 77 programming language
was ratified as an international standard in 1980. An important new international
standard was published in August of 1991 (ISO/IEC3, 1991) and this version was
named Fortran 90°.

The development of Fortran has not ceased. The most recent version of the
language is a minor ravision of Fortran 90 known as Fortran 85 (ISO/IEC, 1997). A
further revision of the language, named Fortran 2000, is expected to be published
by the end of 2002.

“FORTRAN is not a dead language, the majority of programs used and
developed in the scientific and engineering communities are still written in FORTRAN
77 or Fortran 90. High-performance computing is mostly done in one of the parallel
dialects of FORTRAN. FORTRAN 77, and of course the much improved Fortran 90,
are better suited for numerical computation than most programming languages.
Fortran is expected to further improve in this respect.”5

Mention of the word FORTRAN in the first part (Chapters 1 through 6) of this
text refers to FORTRAN 77, which is the most widely used version of the language.
Certain important new features of Fortran 90 are mentioned in the footnotes. The
student using a Fortran 90/95 compiler should read these footnotes carefully. A
separate discussion of Fortran 90 is presented in the second part of this book.

All standard FORTRAN 66 programs will run under FORTRAN 77, but not
vice versa. Similarly, any standard-conforming FORTRAN 77 program is also a
standard-conforming Fortran 90 program, and the existing investment in FORTRAN
77 programs is fully preserved. This means that you can compile your FORTRAN 77
programs using a Fortran 90/95 compiler.

FORTRAN standards are designed to make it possible to run the same
FORTRAN program on any computer without worrying about the variations in the
details of the language. Typically, a particular compiler manufacturer's version of
FORTRAN 77 will include all of the features defined in the ANSI standard, plus
additional features devised by the manufacturer. To be easily transportable from one
type of computer to another (or, from one compiler to another on the same
computer), a program should not use any features that are not in the standard.
Certain non-standard features which are recognized by the majority of modern
FORTRAN 77 compilers, however, are utilized in this book.

2 American Standards Association (ASA) became the United States of America Standards Institute
(USASI) in 1966. USASI adopted its present name, the American National Standards Institute (ANSI),
in 1969. ANSI is the U.S. member body of the International Standards Organization (I8S0).

3 IEC is short for International Electrotechnical Commission.

4 ower case letters are used to spell Fortran 90, unlike the upper case letters used for its predecessors.

5 User Notes on FORTRAN Programming (1996-1998), http://sunsite.icm.edu.pl/fortran/.



1.2 Typing FORTRAN Statements

All FORTRAN compilers recognize the following list of characters:

Upper case alphabetic characters: AtoZz
Digits: 0too
Symbols: + - */ . , '"=8% ( )

These characters, together with the blank space, constitute the FORTRAN
character set. The digits and the alphabetic characters are collectively referred to as
alphanumeric characters.

FORTRAN statements are normally formed using characters from the
FORTRAN character set defined as above. It may be noted that the standard
FORTRAN character set does not include lower case letters®. However, most
FORTRAN 77 compilers in current use permit the use of lower case letters inside
character strings, and some allow lower case everywhere in a program. Furthermore,
with many compilers, certain characters not included in the FORTRAN character set
can be used as continuation marks or inside strings (see Example 1.3). Lower case
letters can safely be used in comments. (What we mean by “comment,” “variable,”
and “character string” will be clear as you study this chapter.)

In writing FORTRAN statements to a file, there are certain rules that must be
followed. These rules can be outlined as follows':

1. Not all 80 columns of a line are used for a FORTRAN statement. The statement
must be typed within the statement field, i.e. columns 7 through 72.

2. Columns 73 through 80 are ignored by the FORTRAN compiler. Some
programmers use these columns for numbering their FORTRAN statements, while
others leave these columns unused.

3. Columns 1 to 5 of a line can be used for labels. A label in FORTRAN is an
unsigned positive integer with a maximum of five digits and is also referred to as a
statement number. Different statements cannot be assigned the same label.

4. Column 6 is called the continuation column. If a FORTRAN statement is too long
for the 66 columns in the statement field, it can be continued in the statement
fields of subsequent lines (called continuation lines) in the file. To do this, any
symbol other than 0 (zero) is typed in column & of each continuation line.

6 The Standard Fortran 90 Character Set includes, in addition to those listed above, the lower case
letters, and the following characters: & > < ? ; & “ ! _

7 Fortran 90 allows the use of a free form in typing programs. In the free form, statements can be
written anywhere on the line. The relevant rules are explained in Chapter 7.




Typically, at most 19 continuation lines are allowed®. The first line of a statement
is called the initial line. A zero (or blank) in column 6 indicates an initial line.
5. A comment can be written on a line by typing "c" or "x" (an asterisk) in column 1
of that line®. Comments are ignored by the compiler.
6. Blanks in FORTRAN programs are ignored by the compiler and may be used to
improve the appearance and readability of a program.
The application of these rules will be illustrated with several example
programs given in the sections that follow.

1.3 Writing Programs in FORTRAN

Taking a look at an actual program written in FORTRAN is probably the quickest way
to gain an appreciation of this programming language. As a beginning, a very simple
example will be considered: A program that displays the phrase "FORTRAN is
beautiful." on the computer screen. Here is a FORTRAN program that
accomplishes this task:

Example 1.1

PROGRAM FIRST
PRINT*, 'FORTRAN is beautiful.’
END

When this program is compiled and executed, the following output appears on the screen of
the computer:

FORTRAN is beautiful.

We shall now take a close look at our first program. The first line of the program
informs us that the name of the program is FIRST. Any name that can be used as a
FORTRAN variable name can also be used as a program name. (We shall examine rules for
the formation of variable names later in this chapter.)

It is actually not mandatory to give names to FORTRAN programs, and you could
omit the first line in the above program. It is, however, good practice to name each program
for easy identification, especially if you write a large number of programs. You should choose
a meaningful program name, e.g. a name that reminds you what the program does.

The file that contains the program may be named programname.for (e.g. FIRST.FOR
in this case). On many systems, however, the use of a different file name is allowed.

The second line of the program contains the PRINT statement. This statement
instructs the computer to display the string of characters contained within the apostrophes.

The END statement terminates the execution of the program. The END statement also
marks the physical end of the list of FORTRAN statements.

Example 1.2:

Next we modify our first program to display an additional string of characters which is too long
to fit within the statement field of a single line.

¥ Up to 39 continuation lines are allowed in Fortran 90.
? An exclamation mark, i.e. ! can be used to start a comment in Fortran 90. See chapter 7.



Typically, at most 19 continuation lines are allowed®. The first line of a statement
is called the initial line. A zero (or blank) in column 6 indicates an initial line.
5. A comment can be written on a line by typing "c" or "*" (an asterisk) in column 1
of that line’. Comments are ignored by the compiler.
6. Blanks in FORTRAN programs are ignored by the compiler and may be used to
improve the appearance and readability of a program.
The application of these rules will be illustrated with several example
programs given in the sections that follow.

1.3 Writing Programs in FORTRAN

Taking a look at an actual program written in FORTRAN is probably the quickest way
to gain an appreciation of this programming language. As a beginning, a very simple
example will be considered: A program that displays the phrase "FORTRAN is
beautiful."” on the computer screen. Here is a FORTRAN program that
accomplishes this task:

Example 1.1

PROGRAM FIRST
PRINT*, 'FORTRAN is beautiful.’
END

When this program is compiled and executed, the following output appears on the screen of
the computer:

FORTRAN is beautiful.

We shall now take a close look at our first program. The first line of the program
informs us that the name of the program is FIRsST. Any name that can be used as a
FORTRAN variable name can also be used as a program name. (We shall examine rules for
the formation of variable names later in this chapter.)

It is actually not mandatory to give names to FORTRAN programs, and you could
omit the first line in the above program. It is, however, good practice to name each program
for easy identification, especially if you write a large number of programs. You should choose
a meaningful program name, e.g. a name that reminds you what the program does.

The file that contains the program may be named programname.for (e.g. FIRST.FOR
in this case). On many systems, however, the use of a different file name is allowed.

The second line of the program contains the PRINT statement. This statement
instructs the computer to display the string of characters contained within the apostrophes.

The END statement terminates the execution of the program. The END statement also
marks the physical end of the list of FORTRAN statements.

Example 1.2:

Next we modify our first program to display an additional string of characters which is too long
to fit within the statement field of a single line.

¥ Up to 39 continuation lines are allowed in Fortran 90.
? An exclamation mark, i.e. ! can be used to start a comment in Fortran 90. See chapter 7.



PROGRAM FIRST2
c***************************************************************************
C This is a modification of our first FORTRAN program.

C 1In this program, we learn how to use a continuation line.
C A continuation mark (any symbol other than 0) is typed
C on the 6th column of the continuation line.
C***************************k***********************************************
PRINT*, 'FORTRAN is beautiful.’
PRINT#*, 'Programming in FORTRAN can be fun-if you are organized, c
&areful and patient.’
END

The expected output is the following:

FORTRAN is beautiful.
Programming in FORTRAN can be fun-if you are organized, careful and patient.

Note that the first letter of the word "careful" is in the 72nd column of the file, and anything
typed beyond this column would be ignored by the FORTRAN compiler. To complete the
PRINT statement, we have used a continuation line which is recognized by the compiler by
means of a continuation mark ("<" in this case) in the 6th column.

Example 1.3:

Type, compile and run the following program. You should, for convenience, type the
characters in the PRINT statements in the order they are placed on your keyboard.

Remember that, strictly speaking, only the characters in the FORTRAN character set
may be used in a FORTRAN program. Lower case letters, however, are allowed by many (if
not all) of the commercially available compilers. On the other hand, the use of characters
such as the “Turkish characters” (¢, §,1, 6, s, U, G, G, I, O, $, U) may lead to unexpected
results. You may modify this program to try to print characters such as ¢, s, etc. that are not in
the FORTRAN character set to see if your FORTRAN system can handie them correctly.

PROGRAM CHARS
C***************************************************************************
o A FORTRAN source file may usually contain:
c 1. All upper case and lower case letters
o 2. Digits 0 thru 9
c 3. Many of the symbols that appear on the keyboard
C***************************************************************************
PRINT*, 'The characters on my keyboard:'
PRINT*, "= e e e e e !
PRINT¥*,
% 'Symbols: ~ ! @ # $ % ~ & * () + ==, ./ <>2{} ] L1\
% H " ; Tt 1

PRINT¥*,
* 'Digits: 01 2 3 456 7 8 9'

PRINT*,

& 'Letters: QWERTYUIOPASDFGHJIKLZXCVBNMgwertyuiopasdfghjklzxcvbnm'

END

The output of this program is as follows:

The characters on my keyboard:

Symbols: ~ ! @ # $ % ~ & * () + O —-=, ./ <>?2{}y I[N
Digits: 01 23 456789



Letters: QWERTYUIOPASDFGHJIKLZXCVBNMgwertyuiopasdfghiklzxcvbnm

Notice the effect of the

PRINT*, ' '
statement. Make sure that you understand how the continuation marks and continuation lines
are used. Note also that two adjacent apostrophes within a character string appear as a single
apostrophe in the output. This is explained in the next section.

Exercises:

1. Delete the first line of the program in Example 1.1 and rerun the program. Is there any
difference in the output of the modified program?

2. 1t is said that the simplest FORTRAN program consists of a single line containing the END
statement. What happens when you run such a program? (Try it.)

3. Retype the program in Example 1.1 using lower case letters for the FORTRAN statements.
(For example, type end instead of END, print instead of PRINT, etc.) What happens? Try
also mixing lower and upper case, e.g. End or eND, etc. What happens?

4. Consider the PRINT statement in Example 1.1, i.e.

PRINT*, 'FORTRAN is beautiful.’ (note the blank space after the comma)
Try each of the following modifications of this statement:

PRINT*, "FORTRAN is beautiful.'!

PRINT*, 'FPORTRAN is beautiful.’

PRINT*, 'FORTRAN is beautiful.’
Compile and run the program again after each modification. Observe how the output is
affected (if at all) by adding or removing blank spaces. Are the blank spaces within character
strings ignored?

5. In Example 1.2, the symbol & was used as a continuation mark. Try using other characters
for this purpose. What happens if you use 0 (number zero)?

1.4 Constants and Variables in FORTRAN

In FORTRAN, there are six basic data types: infeger, real, double precision,
complex, character, and logical. In this section, we shall restrict attention mainly to
integer, real, and character data. Double precision and complex data types are
briefly explained. The logical data type is discussed in Chapter 2.

An integer constant is any signed or unsigned whole number without a
decimal point or any other punctuation. Unsigned numbers are assumed to be
positive. The following are some acceptable integer constants:

=7 +13 0 189675 =78

The following, on the other hand, are unacceptable as integer constants:

68.0 (contains a decimal point)
13,234 (contains a comma)



-75. (contains a decimal point)
--10 (two minus signs)

A real constant can be written in two forms: the decimal form and the
exponential form. In both forms, there is a finite humber of digits and a decimal
point. In the exponential form, a real constant contains a second part starting with
the character E followed by a signed or unsigned integer with at most two digits. The
following are valid as real constants:

-8.5 37. +1345.01 0.0 -0.012
The following are all valid representations of the same real constant (0.027):
0.027 2.7E-02 27.0E-03 +.27E-01 0.0027E01 0.0027E+01

The following are not acceptable as real constants:

123 (no decimal point)
1,345 (contains a comma)
.34E982 (contains three digits after £)

All types of data (integers, real numbers, characters, etc.) are internally
represented as strings of binary digits (bits) in a computer's memory. Internal
representation of character data will be discussed later (cf. Chapter 5) in some detail.

Consider here the representation of integers by strings of binary digits. There
are only two possible binary digits: 0 and 1. Using a single bit, therefore, only two
decimal values (e.g. 0 and 1) can be represented. A group of two bits, on the other
hand, has four different combinations (00, 01, 10, 11) and therefore can represent
four (22) different decimal values e.g. O to 3. Similarly, a string of three bits can be
used to represent eight (2°) different values, e.g. from 0 to 7. A string of 8 bits (a
byte) can represent 2% = 256 different values, whereas a 32-bit string can be used to
represent 2% = 4,294,967,296 possible values.

Normally, half of all possible values are reserved for representing negative
numbers, one value for representing 0 (zero), and the remaining values (half of all
values minus one) for representing positive values. Thus, a group of 8 bits can be
used to represent numbers from —128 to +127. There are several different schemes
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for representing negative numbers in a computer's memory. These will not be
described here; the interested reader may consult texts on computer science'®.

The amount of memory devoted to storing an integer will vary from one type
of computer to another, but it will usually be 1, 2, 4, or 8 bytes"'. The most common
type of integer in modern computers is a 4-byte integer. Since a byte consists of 8
bits, a 4-byte integer is a 32-bit integer. In general, the smallest and the largest
numbers that can be stored in an n-bit integer are —2™" and 2™'-1, respectively. For a
4-byte integer, these values are —2,147,483,648 and +2,147,483,647, respectively.
Attempts to use an integer larger than the largest possible value or smaller than the
smallest possible value result in an error condition called integer overflow.

A real number is stored in two parts: the mantissa and the exponent. This is
similar to scientific notation used in science and engineering. For example, a number
like 189,300,000 is conveniently written as 0.1893x1 0°. Here the mantissa is 0.1893,
and the exponent (in the base 10 system) is 9. A computer uses the base 2 (binary)
system instead of the base 10 (decimal) system. In the internal representation of a
real number, the mantissa contains a number between —1.0 and +1.0, and the
exponent contains the power of 2 needed to scale the number to its actual value.

To store real numbers, most modern computers employ 32 bits (4 bytes) of
memory divided into two components: a 24-bit mantissa and an 8-bit exponent.
There are some computers that use a slightly different division of bits, e.g. 23 bits for
the mantissa and 9 bits for the exponent. The number of bits in the mantissa
determines the precision of the number (i.e. the number of significant digits to which
the number can be represented), while the number of bitsy in the exponent
determines the range (i.e. the largest and the smallest values that can be
represented). For a given size (e.g. 4 bytes) allocated to store real numbers, the
higher the precision is, the smaller the allowed range is, and vice versa.

A double precision constant is similar to a real constant, but it contains
approximately twice the number of digits as an ordinary real constant. (A real
constant is sometimes referred to as a single precision real constant, whereas a
double precision constant is termed a double precision real constant) . A double
precision constant has the same form as the exponential form of a real constant,
except that the letter D is used instead of £, and--on most processors--up to 3 digits
may be used in the exponent. For example, -1.54D-7 and 1.2983D+129 are valid
double precision constants. Double precision constants must be written in the
exponential form. If the exponent is omitted, a constant is interpreted as a (single
precision) real constant.

1% See, for example, Introduction to Computer Science (1981) by V. Zwass.
' A byte is the amount of space needed to store one character (cf. Chapter 5). One kilobyte = 1024
bytes, whereas one megabyte (1 MB) = 1024x1024 bytes = 1,048,576 bytes ~ 1,000,000 bytes. '
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On a typical PC, a real constant occupies 4 bytes (32 bits) of memory,
whereas a double precision constant occupies 8 bytes (64 bits) of memory. Most new
computer systems devote 53 bits to the mantissa and 11 bits to the exponent. In that
case, 15 to 16 significant decimal digits can be accommodated, and numbers with
% or as small as +2.2x10°%® can be

represented in the computer. Remember, however, that some computers may

absolute values as large as +1.7x10

allocate their bits in a different fashion. Older VAX machines, for example, allocated
56 bits to the mantissa and 8 bits to the exponent of their double precision numbers.
This gives a range of +1.18x10™ to +3.4x10"® (same as that of real numbers) and
16 to 17 significant decimal digits of precision?.

While the value ranges and the storage requirements of the various data
types vary from one type of computer to another, the following table shows these
values on a typical PC.

147,483,648 to 2,147,483,647
Real 4 -3.4x10"® to -1.18x10™%®
The number 0
+1.18x10™ to +3.4x10"%
Double precision 8 -1.7x10"% t0 -2.2x10®
The number 0
+2.2x10°%% to +1.7x10"

Integer 4 -2

Attempts to use a number larger than the largest possible value for that type
(e.g. +3.4x10% for reals) or smaller than the smallest possible value (e.g. -3.4x10%*
for reals) result in an error called overflow condition. This condition will normally
cause a program to abort. Attempts to use numbers with absolute values smaller
than the smallest possible positive value that can be represented for that type (e.g.
1.18x10™ for reals) will cause an underflow condition. Such a number will be set to
0 (zero) by most FORTRAN systems.

A complex constant is an ordered pair of real constants. The first constant
represents the real part of the complex number, and the second represents the
imaginary part. The two real constants are enclosed in parentheses and separated
by a comma. For example, (3.0,2.5) represents the complex number 3+2.5i.
While not part of standard FORTRAN, a double complex data type is defined on
many compilers: a double complex constant is an ordered pair of double precision
constants.

12 Chapman (1998), p.419.
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A character constant consists of a string of characters enclosed in
apostrophesﬁ. Any character taken from the FORTRAN character set may be
included in the string. The following are valid character constants:

'PDO-546" "FORTRAN is beautiful.’ 'T don''t like Pascal.’

Blanks are permitted in character constants and are significant. Thus, 'STR ING®
and 'STRING' are different constants.

Earlier it was noted that the standard FORTRAN character set does not
include lower case letters. However, most FORTRAN 77 compilers permit lower case
letters to be used inside strings. If lower case is allowed, then the case of letters is
also significant within character constants. For example, the character constants
"Name' and 'NAME' are different.

Furthermore, any particular compiler will almost certainly have codes for
characters not included in the standard FORTRAN character set, and these may be
used inside character strings. If you are working on a PC, for example, you are
probably allowed use any printable ASCIi character inside character strings. It should
be remembered, however, that a program that uses a non-standard feature may not
work on a different type of computer. See Chapter 5 for more information.

When character data are printed, the enclosing apostrophes are omitted.
Note that two adjacent apostrophes are used in a string to indicate contraction or
possession. The following are examples of invalid character data:

'I'm going.' (missing apostrophe: shouldbe "I''m going."')

'"FORTRAN is beautiful. (missing apostrophe)
100 (integer constant)

FORTRAN permits the use of descriptive symbolic names (called variable
names, or simply variables) to designate memory cells. The term variable in
computer terminology means a memory cell with variable contents. That is, the value
stored in such a memory cell can be changed during program execution. (Constants
are also stored in memory cells. The content of such a memory cell is not intended to
be modified.) If a variable (memory cell) is used to store integer values, it is called an
integer variable; if it is used to store real values, it is called a real vaniable, and so on.

The rules that must be followed in the formation of FORTRAN variable names
are as follows: A variable name may contain only six alphanumeric characters™ (Ato

'3 In Fortran 90, quotation marks can also be used to delimit character strings. Thus, “string” and
'string' are equivalent. .

'* Fortran 90 allows longer variable names (up to thirty-one characters), and the use of the underscore
character and lower case letters in variable names.
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Z and 0 to 9), and must always begin with an alphabetic character (A to z). Standard
FORTRAN 77 allows upper case letters only.

Note that the same restrictions apply to program names. Furthermore, a
program name must be unique and cannot be used as the name of a variable within
the same program unit'.

A word (such as END, PRINT, REAL, etc.) with a special, predefined meaning
for the compiler is termed a keyword. Using keywords as variable names makes
programs harder to understand. Therefore, although the rules of FORTRAN do not
prohibit it, the use of keywords as variable names should be avoided.

Some FORTRAN 77 compilers allow the use of more than six characters,
and/or the inclusion of lower case letters, the underscore (), and the dollar sign ($)
in variable names. (You should check whether your FORTRAN system includes
these extensions.) In this text, however, we shall take a cautious approach with
regard to variable names and assume that the restrictions stated above apply without
change. Hence,

GOOD NEW RESULT Z21
are acceptable variable names, but the following are not:

2XYz  (The first letter is not alphabetic)
A*BC  (* is not alphanumeric)

INCOMETAX  (More than six characters)
END (Has a special meaning in FORTRAN)

If the use of lower case letters in variable names is allowed by your
FORTRAN system, remember that the case of letters is insignificant in variable
names. Thus, for example, the names NUMBER and Number would refer to the same

variable™.

1.5 Implicit Typing of Variable Names and Type Declarations

FORTRAN uses the following implicit first-letter typing convention for variable
names: If the first character of a variable name is I, J, K, 1, M, or N, then that
varniable is typed as integer. If the first character is one of the other letters (A to H and
o to z) then the variable is typed as real. No variable names are implicitly typed as
double precision, complex, logical, or character. Hence, IXY, MONDAY, KOOL are

1S The only program unit we have seen so far is a main program, i.e. a program that starts with the
PROGRAM statement and ends with the END statement. Other types of program unit such as functions
and subroutines will be discussed later (sece Ch.4).

16 The lower case and upper case letters are distinct in the C programming language. Thus the names
number, Number, and NUMBER each refer to a different variable in C.
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valid integer variable names, whereas BAY, ZERO, HEY are valid as real variable
names.

Frequently, however, it is not desirable to follow the implicit typing rule for
variable names. One may, for example, want to use LENGTH as a real variable that
represents the length of a specified object. The implicit typing rule in FORTRAN can
be overridden by using an explicit type declaration. To inform the compiler that
LENGTH will be used as a real variable name, the following type declaration should
be inserted at the top of the program:

REAL LENGTH

As another example, assume that a program contains the following statements:

REAL NEW, K, MAXIM
INTEGER AGE, C, D2

Thus, NEW, K, and MAXIM are typed as real variables, whereas AGE, C, and D2 are

typed as integers, and they will be used as such throughout the program. The

following points regarding type declarations and implicit typing should be noted:

1. Type declarations are non-executable FORTRAN statements. As such they
provide information to the compiler. They must appear at the beginning of the
program before all executable statements.

2. The general format of type declarations is as follows:
REAL list of variables
INTEGER list of variables
COMPLEX [ist of variables
DOUBLE PRECISION list of variables
LOGICAL list of variables
CHARACTER*n list of variables

Commas are used to separate the variable names in the list of variables. Here n
(a positive whole number) is the number of characters stored in a character
variable declared in this manner. If character variables of different lengths (say, n;
and ny) are to be used within the same program, a separate declaration can be
included for each distinct length:

CHARACTER*N, list of variables

CHARACTER*nN, list of variables
Alternatively, the length specifier for each variable can be placed after the name
of that variable in the CHARACTER declaration:

CHARACTER var*n;, var:*ns, ..., vary nm
The symbols *1 may be omitted when declaring a variable for storing a single
character. If the “double complex” data type is recognized by the compiler being
used, variables of that type may be declared as follows:

COMPLEX*16 list of variables
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3. Any variable that is not explicitly declared in a type declaration is automatically
associated with a computer memory cell when it is first encountered in the
program. The type of such a variable is determined by the first-letter typing
convention.

From what has been said above, it is clear that FORTRAN allows the use of
variables not explicitly declared with a type declaration. In the early days of
programming, many programmers were unhappy about having to declare variables
before using them. As a result, FORTRAN provided this alternative form of
determining the type of a variable based on its initial letter. The first-letter typing rule
saves time by reducing the number of statements the programmer has to type.

Utilization of this implicit first-letter typing convention, however, can
sometimes lead to programming errors which are very difficult to track. To make sure
that all the variables used in a program are declared explicitly, the following
statement should be inserted at the top of the program (before all type declarations
but after the PROGRAM statement):

IMPLICIT NONE

This statement effectively removes the first-letter typing convention and prevents the
use of variables not declared explicitly".

Example 1.4.

Type, compile and run the following program exactly as it is written here:

PROGRAM ERROR
S A R T R TS 2

c This program illustrates one kind of error that can occur

Cc when the use of undeclared variables is allowed.
C*************k*******************'k******************************************

NUMBER = 27
PRINT*, 'The number is ', NUMBR
END

The output of this program will probably be
The number is 0

Note that although the integer variable NUMBER is assigned the value 27, the value displayed
is zero. This happens because, the value printed is that of NUMBR which is a distinct variable
that is introduced as a result of a typing error. The statement

PRINT*, 'The number is ', NUMBR

7 While the IMPLICIT NONE statement is not in the ANSI standard, it is recognized by the majority
of the present FORTRAN 77 compilers. Furthermore, standard Fortran 90 includes this statement.
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is translated using a new memory cell associated with the variable NUMBR, although the
intention is to print the value of NUMBER. Inconsistent spelling of variable names in this
manner is a common error but may not be detected by the compiler.

A variable is said to be defined if a value has been placed in it by the program.
Although the program output given above shows the value of NUMBR as 0 (zero), the value of
any undefined variable is simply the value that happens to be sitting around inside the
computer's memory at the time that the program is executed. As a result, no assumption
should ever be made as to the value of an undefined variable.

Since it makes no sense to use or print the value of a variable that has never been
defined previously in the program, some compilers give a warning message like

WARNING - INTEGER VARIABLE (NUMBR) NEVER ASSIGNED A VALUE

when such a mistake is made. This feature is useful, but it does not provide a protection
against all the potential hazards associated with the use of undeclared variables. For
example, if NUMBR appears on the left of an assignment (NUMBR = ...), there will be no
warning and the expression value will be incorrectly assigned to NUMBR instead of NUMBER.
Furthermore, warning messages are informational only; they do not prevent compilation and
execution. Next, modify the program as follows and compile it:

PROGRAM BETTER
ol This program illustrates the use of IMPLICIT NONE
IMPLICIT NONE
INTEGER NUMBER
NUMBER = 27
PRINT*, 'The number is ', NUMBR
END

This program still contains the original error, i.e. NUMBER has been typed as NUMER in the
PRINT statement. When you attempt to compile this program, however, the compiler will
prompt you with a fatal error message concerning the undeclared variable NUMBR. You
cannot execute this program without correcting the typing error. (if a statement has a syntax
error, the compiler cannot translate it and the program cannot be executed.) Next, carry out
the necessary correction and compile/run the program.

Note that, in this very simple example, taking a quick look at the program would
suffice to discover the error we have made: We have typed NUMBR instead of NUMBER.
Consider, however, a program which contains thousands of lines and hundreds of variables.
(Such a program size is typical in many practical programming projects.) it would be very
difficult to find a typographical error such as this by a mere visual inspection of the program
listing. The IMPLICIT NONE statement is therefore very useful when working with long
programs containing many variables.

A complete list of all variables appears in the type declaration section of a program if
the IMPLICIT NONE statement is used. If the program is to be modified at a later time, the
programmer can easily check this list to avoid using variable names that are already used in
the program. This helps to prevent a common error which occurs when modifications to a
program inadvertently change the values of some variables used elsewhere in the program.

Based on these considerations, it is recommended that the IMPLICIT NONE
statement be included in all FORTRAN programs.

1.6 Arithmetic Operations and Expressions

in Example 1.4, we have used the assignment statement

NUMBER = 27
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which assigns the value 27 to the integer variable NUMBER. The value of a variable
(that is, the value stored in the memory cell associated with that variable name) is
often determined by one of the following two ways: (1) an arithmetic assignment
statement is used, or (2) the value is read in from a data file or entered at a computer
terminal during program execution. The second method employs the READ statement
which is discussed in the next section.

An arithmetic assignment statement has the following general form:

Variable Name = Arithmetic Expression

The result (i.e. value) of the Arithmetic Expression is stored in the memory cell
specified by the variable on the left side of the assignment operator (=). The
previous value of the variable is erased when the expression value is stored. The
arithmetic expression can be a single constant or variable, or a computation involving
constants, variables, and the arithmetic operators listed below:

+ Addition

- Subtraction

/ Division

* Multiplication
* Exponentiation

The operators listed above are binary operators, appearing between two operands.
In an expression like 3+4, for example, 3 and 4 are the two operands and the plus
sign is the binary operator. The plus and the minus signs may also be employed as
unary operators (operators with a single operand), the minus sign standing for
negation and the plus sign acting as the identity operator. Thus, -4 is the negative
number “minus four,” and +5 is identical to 5.

FORTRAN does not allow two arithmetic operators to appear next to each
other. Thus, the mathematical formula x” should be written as x** (-Y), and not as
x**-Y. The following are other examples of valid arithmetic expressions:

Expression Value
2%5 10
1+3 4
4/2 2
3%*2 9
6-2+3 7
N + 2 Depends on the value of N

A *B Depends on the values of 2 and B
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The meaning of each expression given above is unambiguous, but what do we mean

when we write 2+4/2 ? The value of this expression depends on the order of

evaluation of the arithmetic operations of addition and division: If division is

performed first, then the value of the expression is 2+2, i.e. 4. If addition is

performed first, the value is 6/2, i.e. 3. In order to write complicated expressions

correctly, the following rules of expression evaluation should be remembered:

1.

All subexpressions within parentheses are evaluated first. In the case of nested
parenthesized subexpressions, the innermost subexpression is evaluated first.

. The computer evaluates a parenthesis-free subexpression using the following

hierarchy:

First precedence: * %

Second precedence: / and *

Last precedence: + and -

Operators within the same parenthesis-free subexpression and at the same level
of hierarchy (such as / and *) are evaluated from left to right. The exception to
this rule is A**B**C which is evaluated from right to left, i.e. as A** (B**C).

Consider the following examples:

A+B/C B/C is evaluated first, the value of B/C is then added to 2.
(A+B) /C A+B is evaluated first, the result is divided by C.

M*K/J M is multiplied by K first, the result is divided by J next.
M* (K/J) K/J is calculated first and its value is multiplied by M.
A/B**2 B**2 is evaluated first, 2 is then divided by B*~*2.

(A/B)**2  A/Bis calculated first, then its square is computed.

it is clear that inserting parentheses in an expression may change the order

of operator evaluation. If you are not sure about the order of evaluation that will be

followed by the compiler in a particular case, you can use extra parentheses to

clearly specify the order of evaluation you want:

Expression Alternative Equivalent Expression
A + B*C - C**2 A + (B*C) - (C**2)
D**E*F (D**E)*F
X+72/X/Y X + ((2 /X)/Y)
A*B**2/ (C*D) (A* (B**2) )/ (C*D)
-2.5%*3 -(2.5%*3)

As you become more experienced in FORTRAN, however, you should try to

avoid using redundant parentheses as they tend to make rather simple expressions
look unnecessarily complicated. While ( ((A)+(B))+((C)—-(D))) is syntactically a

perfectly correct FORTRAN expression, it is awkward when compared to the
equivalent expression A+B+C-D.



19

So far in our discussion of arithmetic expressions, we have not focused on
the types of the variables and constants in these expressions. When both of the
operands of an arithmetic operation are of type integer, the arithmetic involved is
referred to as integer arithmetic and the operation generates an integer value.
When the operands are real, then real arithmetic is performed to yield a real value.
For example, integer arithmetic is performed to evaluate

6+7 3-2 3*4

yielding integers 13, 1, and 12, respectively. Integer division also yields an integer,
the integral part of the quotient. Hence, the fractional part of the quotient is truncated
in integer division. For example,

3/2 yields 1 -3/2yields -1 5/10 yields 0

It is very important to understand the consequences of using integer division. For

example, since division has higher precedence than addition, the expression

1/3 + 1/3 + 1/3

is equivalent to
(1/3) + (1/3) + (1/3)

which evaluates to 0 (zero), since 1/3 yields 0. On the other hand, real arithmetic is

used to evaluate
6.+7. 3.-2. 3.%4.

yielding reals 13., 1. and 12., respectively. Real division is similar to ordinary
division. Thus

3./2. yields 1.5, -3./2. yields -1.5 5./10. yields 0.5

The examples above illustrate a general rule: When both operands of a
binary operation are of the same type, the result of the operation is also of that type.
When the two operands are of different data types, then we speak of a mixed-mode
of operation. For example, one operand may be of type real, while the other is of
type integer. In such a case, the integer is first converted to real and then real
arithmetic is performed to yield a real value. Therefore

6+7. and 6.+7 yield the real value 13.0
3/2. and 3./2 yield1.5

Consider now the following mixed-mode expression:
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13/2 + 2.5 yields the real value 8.5

In this expression, the integer division 13/2 is carried out first (division has
precedence over addition) yielding the integer value 6 which is then converted to the
real value 6.0 and added to the real value 2.5, yielding the real number 8.5. As
this example illustrates, it is possible for one part of an expression to be evaluated
using integer arithmetic, followed by another part evaluated using real arithmetic.

The general rule that applies in the evaluation of mixed-mode expressions is
the following: the fype of the value returned by an expression is the type of the
‘highest-ranked” operand. The ranking of operands is: (1) complex, (2) double
precision (3) real (4) integer. For example, if a complex number and a real number
are added, the real number is first converted to a complex number, and the result of

the addition is also complex: '
(3.5,4.0) + 5.2

is equivalent to
(3.5,4.0) + (5.2,0.0)

which yields (8.7, 4.0). Note that when a real number is converted to a complex
number, 0.0 (zero) is appended as the imaginary part.

Mixed-mode of operations involving both a double precision operand and a
complex operand are not permitted in standard FORTRAN. If the “double complex’
data type is defined on the FORTRAN compiler you are using, then you may use
mixed-mode expressions involving both complex numbers and double precision
numbers. The evaluation of such an expression, however, constitutes an exception
to the above stated rule: both operands are first converted to double complex, and
the expression yields a double complex result.

There are a couple of subtle points regarding the exponentiation operation
that should be mentioned here. Consider the expression X**N, where X is real and N
is integer. This actually is not a mixed-mode expression because the computer
multiplies X by itself N times when this expression is evaluated. That is, this
expression is evaluated as X*x*. . .*x where X occurs N times.

Next, consider the expression x**7, where z is real. This expression will
not be evaluated by multiplying X by itself; it will probably be evaluated by using the
algebraic equality X* = ™. This method takes longer to perform and is less
accurate than a series of mu!tiplications“. Therefore, an integer exponent should be
used instead of a real exponent whenever possible. For example, write X**3 instead
of x**3.0.

'8 Chapman (1998), p.43.
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It should also be noted that a negative number cannot be raised to a real
power. For example, (-3.)**2.5 and (-2.)**3.0 are not valid expressions.
Note that raising a negative number to an integer power e.g. (-2.)**3 is allowed.

We now return to our discussion of arithmetic assignment statements. When
the two sides of = are of different types, the statement is a mixed assignment
statement.

It is important to understand that in an assignment statement, two different
actions take place: (1) The evaluation of the arithmetic expression on the right side
of =. (2) The assignment of the result of this evaluation to the memory location
represented by the variable name on the left of =.

The first step is carried out in accordance with the principles discussed
above. In the second step, if the value of the expression is an integer and the
variable on the left is real, then the expression value is converted to real and then
assigned to the real variable. Thus, in the assignment statement

A=2 4+ 1/2 + 3

the expression on the right side of = is first evaluated and the integer value 5 is
found. Then, (assuming 2 is of type real) 5 is converted to 5.0 and then assigned to
A. It should be understood that the expression is evaluated before the assignment is
made, and the type of the variable being assigned has no effect whatsoever on the
expression value. Consequently, integer arithmetic is employed to evaluate the
arithmetic expression 2 + 1/2 + 3 despite the fact that A is real.

If the value of the expression is of type real and the variable on the left is of
type integer, then the real value of the expression is converted to integer by
truncating the fractional part before it is assigned to the integer location. Assuming
that NUM denotes an integer variable, the assignment statement

NUM = 7.0 / 2

results in the storage of the value 3 in NUM.

Example 1.5:

This program illustrates some of the rules associated with mixed-mode operations and
arithmetic assignment statements in FORTRAN. Type and run the program, and examine its
output. Make sure that you completely understand the resuits of the program.

PROGRAM ARITH

C*****************‘k*********************************************************

C Program to observe the results of certain mixed-mode
C arithmetic operations and mixed-mode assignment statements.

C***************************************************************************

IMPLICIT NONE
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REAL X, ¥, Z, Q
INTEGER B, C

B=5/2
c=5./ 2.
X=5/2
Y =5./2
Z=5/2
Qg =5,/ 2.

PRINT*, 'B and C are integer variables;'
PRINT*, 'X, Y, Z and Q are of type real:'

PRINT*, ' !

PRINT*, 'B =5 / 2 gives B =', B
PRINT*, 'C = 5. / 2. gives C =', C
PRINT*, 'X =5 / 2 gives X =', X
PRINT*, 'Y = 5. / 2 gives Y =', Y
PRINT*, 'Z =5 / 2. gives Z =', Z
PRINT*, 'Q = 5. / 2. gives Q =', Q
END

The output should look like the following:

B and C are integer variables;
X, Y, Z and Q are of type real:

B=5/2 gives B = 2
Cc =5,/ 2. gives C = 2
X=5/2 gives X = 2.00000
Y=5./2 gives Y = 2.50000
zZ =5/ 2. gives Z = 2.50000
Q =5,/ 2. gives Q = 2.50000

Finally, it should be emphasized that, although the assignment operator (=)
looks like the “equals sign” in algebra, it has an entirely different meaning in
FORTRAN. Thus, while a statement like

I=1I+1

would make no sense in algebra, it is a perfectly valid statement in FORTRAN. It

means: take the value of the variable named I, add 1 to it, and assign (store) the

result of the summation in (the memory location represented by) the variable I.

1.7 List-Directed READ and PRINT Statements

We have been using the PRINT statement although we have not formally discussed
its general syntax and properties. Here is the general form of the list-directed PRINT

statement:
PRINT*, output list
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where the output list is a list of constants, variables, and expressions. Commas
separate the items in the oufput list. Each PRINT statement initiates a new line of
output. Similarly, the general form of the list-directed READ statement is as follows:

READ*, input list
Commas are used to separate the items in the input list which is a list of variables.

When a READ statement is reached during execution, the program pauses
and waits for data. (It is always helpful to print a prompting message just before
each READ statement is executed.) You then type in one data value for each variable
in the input list. The data items must be separated by one or more blanks, or a
comma. After the required data are typed, you press the ENTER (or RETURN) key
on your keyboard. Alternatively, you can press ENTER after typing each data item.
The program will wait until all items are entered. If the terminating character is a
slash (/), however, then no more data items are read. If there are any remaining
items in the input list, their values will remain unchanged.

Thus, there are four value separators in list-directed input: A comma, a
blank, a slash, or the end of the line. Any of these value separators may be
preceded or foliowed by any number of consecutive blanks. If there are two
consecutive commas, the effect is to leave the corresponding variable in the input list

unchanged. For example, consider the following program segment:

INTEGER K, L, M
K =1
L =2
READ*, K, L, M

If the user inputs (try this):
5, , / 3
K is assigned the value 5, the value of L remains 2, and the input record is
terminated with the slash (/) before a value for M is read, so M remains undefined.
The list-directed READ and PRINT statements are sometimes referred to as
unformatted READ and PRINT statements, respectively. This terminology is used by
many authors, because in list-directed output the programmer has no control over
the format (the number of blanks between data values, number of digits after the
decimal point, etc.) of the output data. Similarly, the exact format of the input data is
not specified by the programmer when list-directed input is used. As we shall learn in
Chapter 5, however, the term “unformatted” has a different meaning in /O
(input/output) operations, and list-directed I/O is also a type of formatted input/output.
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Example 1.6:

The following is a program that calculates and prints out the surface area and volume of a box
with dimensions H, L, and w:

PROGRAM BOX

c***************************************************************************

c Program to calculate the surface area and the volume of a box
c H : height

C W : width

C L : length

c AREA : surface area of the box

Cc VOLUME : volume of the box

C******************************‘k*******~k*~k********************************‘k*

IMPLICIT NONE

REAL H, L, W, AREA, VOLUME

PRINT*, 'Enter length, width and height: '
READ*, L, W, H

AREA = 2 * (L*W + L*H + H*W)

VOLUME = L*H*W

PRINT*, 'Surface area =', AREA

PRINT*, 'Volume =', VOLUME

END

Note that the prompting message

Enter length, width and height:

tells the user of the program which data values must be entered and the order in which they
must be entered. Such a prompting message can be very helpful and minimizes the possibility

of making mistakes when entering data. A typical run will look like the following:

Enter length, width and height: 1.5 1.0 2.0

Surface area = 13.0000
Volume = 3.00000
Exercises:

6. Develop a program to read the diameter of a circle. Compute the radius, circumference,
and area of the circle. Print the results.

7. Develop a program to read the length and the width of a rectangle, and compute and print
its perimeter and area.

8. Write a program to read three real numbers into variables 2, B, and c, and compute and
print their sum, product, and average.

9. Write a program that reads in a temperature value in degrees Celsius, and computes and
prints the temperature in degrees Fahrenheit.

10. Wirite a program to compute the volume of the shell of a hollow ball. The program should
read the outside radius of the ball and the thickness of the shell. Hint: The volume of a sphere
of radius r is 4nr/3.
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1.8 Library Functions in FORTRAN"

The FORTRAN language has a set of built-in functions which can be very helpful in
programming. These functions are also referred to as library functions or intrinsic

functions. The mathematical functions of FORTRAN are particularly useful in

scientific and engineering computations. A table containing the intrinsic mathematical

functions of FORTRAN 77 is given below.

SQRT (X) Real, complex, double | Square root Same as argument
EXP (X) Real, complex, double | Exponential (€9 Same as argument
LOG (X) Real, complex, double | Natural logarithm Same as argument
LOG10 (X) Real or double Base-10 logarithm Same as argument
ABS (X) Integer, real, or double | Absolute value Same as argument
ABS (X) Complex, e.g. X = (a,b) | Magnitude ,/a’ +b” Real

SIGN(X,Y) integer, real, or double | Sign transfer Same as arguments
MOD (¥, Y) Integer, real, or double | Remainder Same as arguments
DIM(X,Y) Integer, real, or double | Positive difference Same as arguments
MAX (X,Y,...) |Integer, real, or double | Select largest argument | Same as arguments
MIN(X,Y,...) |Integer, real, or double |Select smallest argument | Same as arguments
COS (X) Real, complex, double | Cosine (X in radians) Same as argument
SIN(X) Real, complex, double | Sine (X in radians) Same as argument
TAN (X) Real, double Tangent (X in radians) Same as argument
ASIN (X) Real, double Arc sine Same as argument
ACOS (X) Real, double Arc cosine Same as argument
ATAN (X) Real, double Arc tangent Same as argument
ATANZ (X,Y) Real, double Arc tangent of X/Y Same as arguments
COSH (X) Real, double Hyperbolic cosine Same as argument
SINH (X) Real, double Hyperbolic sine Same as argument
TANH (X) Real, double Hyperbolic tangent Séme as argument
AIMAG (X) Complex, e.g. X = (a,b) | Imaginary partof X, i.e. b | Real

CONJG (X) Complex, e.g. X = (a,b) | Conjugate of X, i.e. (a,-b) | Complex

DPROD (X, Y) Real Double precision product | Double

1 Only the FORTRAN 77 library functions are presented in this chapter. Fortran 90 introduced a
significant number of new library functions that give additional power to the language.
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The symbols X and Y in the above table represent the arguments of the
corresponding functions. In general, the argument of a function may be a single
constant, a variable, or an expression. The argument may contain a function
reference. For example, ABS (SIN (X)) returns the absolute value of the sine of the
variable named X.

Many library functions, like cos and ABS, allow the use of more than one type
of argument. Certain functions, like AIMAG and FLOAT (to be discussed later), allow
only one type of argument.

The type of the value returned by a mathematical function is normally the
same as that of its argument(s). For example, SQRT (X) returns a real value if X is
real: it returns a double precision value if X is double precision. Two exceptions are
the following: ABS (X) returns a real value when its argument is complex. AIMAG
takes only a complex argument, and returns a real value.

The sign transfer function SIGN takes two arguments, say X and Y. The
value of SIGN (X, Y) is determined as follows: SIGN(X,Y) = ~|X| if Y < 0, and
SIGN (X,Y) = |X|ify > 0%

The library function DIM returns the positive difference of its two arguments:
DIM(X,Y) = O0ifX < ¥, while DIM(X,Y) = X - Yifx > Y. Thus, DIM(10,3)
= 7,and DIM(2,4) = 0.

The maximum and minimum functions Max and MIN take two or more
arguments. MAX, for example, finds the maximum value in the argument list. Thus,
MAX (10, -2) is 10, whereas MIN(-2.5,-7.0,3.,4.2) is -7.0.

The library function MoOD computes the remainder of the division of its first
argument by the second. For example, MOD (10, 5)=0, MOD(7.,2.)=1.0. The
formula used in the calculation is as follows: MOD (X, Y) = X - (INT(X/Y)*Y).
The MoD function is often used to determine whether one integer is an exact divisor
of another. If integer N is a divisor of ¥, the value of MOD (M, N) will be zero. The
library function INT is described later in this section.

Example 1.7:

The following program illustrates the use of the function SQRT in finding the real roots of a
quadratic equation. The coefficients of the equation are entered interactively.

PROGRAM QUAD
c***************************************************k***********************
¢ Program to solve a quadratic equation of the form
(o} A*X**2 + B*X + C = 0
¢ Only real roots are sought.
C******************************************‘k********************************

20 §ometimes in the text we shall use the equals sign (=) with its usual meaning in algebra, i.e. it will
mean “is equal t0.” Remember, however, that (as the assignment operator) it has a different meaning
within a FORTRAN program.
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IMPLICIT NONE

REAL A, B, C, ROOT1, ROOT2, DISCR
PRINT*, 'Enter a, b, c: '

READ*, A, B, C

DISCR = B**2 - 4 ,0*A*C

ROOT1 = (-B + SQRT(DISCR))/(2.0*A)
ROOTZ2 = (-B - SQRT (DISCR))/(2.0*A)
PRINT*, 'First root =', ROOT1
PRINT*, 'Second root =', ROOT2Z
END

The following shows how the program should execute:

Enter a, b, c¢: 1. 1. -2.0
First root =  1.00000
Second root = -2.00000

It may be noted that we couid write

ROOT1
ROOT2

(-B + SQRT(B**2 — 4.0%A*C))/(2.0*A)
(-B - SQRT(B**2 - 4.0*A*C))/ (2.0*A)

instead of the three lines

DISCR = B**2 — 4.0*A*C
ROOT1 = (-B + SQRT(DISCR))/(2.0*A)
ROOT2 = (-B - SQRT(DISCR))/{2.0*A)

This latter approach reduces the chances of error because the resuiting formulas for
ROOT1 and ROOT2 are simpler. It may sometimes be convenient to break a complicated
expression into subexpressions that are assigned to temporary variables (such as DISCR). For
example, instead of writing

T = (1 + SQRT (A+B)+ABS (D)) / (1+SQRT (A+B) +ABS (D) +2*C)
you can write the three statements

TEMP1 1 + SQRT (A+B)+ABS (D)
TEMP2 TEMP1 + 2*C
T = TEMP1/TEMP2

which have the same effect. Note also that, we could write

DISCR** (1./2)

instead of
SQRT (DISCR)

However, it is more efficient and more accurate to use the SQRT function. Notice that we write
(1./2), and not (1/2), because the value of the integer expression 1/2 is zero (not 0.5)
in FORTRAN.

Remark: The program given above (QUAD) actually has a few deficiencies: Firstly, it cannot
handle a negative discriminant as it has no mechanism to check whether b2-4ac is
nonnegative or not. The execution stops with an error message if the discriminant is negative
(try, for example, a = 1, b = 0 and ¢ = 1). Secondly, consider what happens if a = 0: in the
calculation of RooT1, the denominator will be zero and (since division by zero is undefined)
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this will generate another unpleasant looking error message. We shall learn how to handle
these cases as we learn more about FORTRAN (see Example 2.7).

Example 1.8:

The following program reads in the side lengths A, B, and c of a triangle, and computes and
prints the area and the perimeter of the triangle. Here s denotes the semi-perimeter, i.e. half
the perimeter. The area is equal to the square root of the product 5 (S-A) (S-B) (5-C) .

PROGRAM TRIAN

c******‘k*******************************************************‘k************

c This program computes the perimeter and area of a triangle.

C A, B, C : Lengths of the three sides of the triangle
C PER : Perimeter of the triangle
cC S : Semi-perimeter of the triangle

C*********************************************‘k*****************************

IMPLICIT NONE

REAL A, B, C, AREA, PER, S

PRINT*, 'Enter the side lengths of your triangle: '
READ*, A, B, C

PER = A + B + C

$ = PER/2.0

AREA = SQRT (S* (S-A) * {S-B) * (5-C))

PRINT*, 'Perimeter =', PER
PRINT*, 'Area =', AREA
END

Example 1.9:

The area of a triangle can also be computed using the formula
Area = (1/2) a b sind

where 6 is the angle between the sides whose lengths are a and b. The program presented
below reads in the side lengths a, b, and the angle 6 (represented by the variable name
THETA), and computes and prints the side length ¢, the area, and the perimeter of the
triangle. Note that the program reads 6 in degrees and converts it to radians. (Remember that
the argument of a FORTRAN trigonometric function has to be in radian measure.) The Law of
Cosines is employed to calculate ¢, i.e. ¢* = a° + b’ — 2ab cos6.

PROGRAM TRIAN2Z

C*****‘k********************************k-k-k***********************************

c Given the lengths of two of its sides and the angle between these sides,
C this program computes the length of the third side, the perimeter and

c the area of a triangle.

o} A, B, C : Lengths of the three sides of the triangle

c PER :+  Perimeter of the triangle

c THETA : Angle between A and B

C*********************************************k*******************‘k***‘k*****

IMPLICIT NONE
REAL A, B, C, AREA, PER, THETA
PRINT*, 'Enter two side lengths of your triangle:
READ*, A, B
PRINT*, 'Enter the angle (in degrees) between these sides: '
READ*, THETA
C Convert to radians
THETA = 3.14159*THETA/180.0
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AREA = A*B*SIN(THETA)/2.0
C Use Law of Cosines to calculate side C
C = SQRT(A**2 + B**2 -~ 2*A*B*COS (THETA))
PER = A + B + C
PRINT*, 'Length of the third side =', C

PRINT*, 'Perimeter =', PER
PRINT*, 'Area =', AREA
END

The specific constant 3.14159 is used for = in the above program. This is acceptable, but may
not be as accurate as possible. A alternative may be to introduce a variable pz1, and to set p1
= Acos(-1.) atthe top of the program. This vatiable can then be used to represent = in the
rest of the program (see Exercise 13).

Exercises:

11. Write a program that prompts the user for the Cartesian coordinates of two points
(x1,¥1,21) and (x2,¥»,z») and displays the distance between them:

distance = \/(xz _xl)2 +(, _Y1)2 +(z, ‘21)2

12. You are given the coordinates of three points (X;,Y1), (X2,Y2), (X3,Y3) on the X-Y plane.
Write a program to read the coordinates. Next calculate and print the distances DIST;,,
DIST4;, and DIST,; between the points. Also calculate and print the area of the triangle
formed by the three points:

Area = 0.5 | XY XoY14+XY5-X3 Yo+ X5 Y 1-X1 Y3 |

13. The standard FORTRAN functions like SQRT and Acos usually provide results that agree
with exact values very well because they have been written carefully. The constant =, for
example, can be calculated accurately using the trigonometric functions of FORTRAN. To
demonstrate this, type and run the following program:

PROGRAM CALCPI

C***********************'k*'k‘k*'k*****‘k*********************'k******************

C Program demonstrates calculation of pi = 3.14159....
C******'k********************************************************************
IMPLICIT NONE
REAL PT
DOUBLE PRECISION DPI
c Set PI and DPI equal to the "exact" value of pi
PI 3.141592653589793238462643
DPI 3.141592653589793238462643D0
c See how PI and DPI are stored in the computer
PRINT 1, 'PI =', PI
PRINT 1, 'DPI =', DPI
C See how PI can be calculated using library functions

PRINT 1, 'ACOS(-1.) =', ACOS(-1.)

PRINT 1, 'ACOS(-1.D0) =', ACOS(-1.DO)

PRINT 1, '4*ATAN(1.) =', 4*ATAN(1.)

PRINT 1, '4*ATAN(1.DO) =', 4*ATAN(1.DO)
(

7
1 FORMAT(1X, A, F35.30)

The output should look like the following:

PI = 3.1415830000000000000000060000000
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DPI = 3.141592653589793000000000000000

ACOS (-1.) = 3.141593000000000000000000000000
ACOS(-1.D0) = 3.141592653589793000000000000000
4*ATAN(1.) = 3.141593000000000000000000000000
4*ATAN(1.DO) = 3.141592653589793000000000000000

The “exact” value’' of = was taken from Mathematical Handbook cited in References.
This program uses user-formatted output (via the FORMAT statement) to print as many digits
as desired after the decimal point. Do not worry about the use of the FORMAT statement at this
stage (although you can read Section 1.9 to learn about this statement). Notice, however, that
the values stored in the variables pI and DPI are not equal to the “exact” value assigned to

them. Consequently, we might as well use the value of ACOS{-1.) or ACOS(-1.D0) form
in our programs instead of typing a long constant such as 3.141592653589793238462643.

In addition to the mathematical functions discussed so far, FORTRAN has a
number of other library functions which augment the strength of the language. These
are (i) type conversion functions, (ii) functions for truncating and rounding, and (jii)
character processing functions. The following is a list of the names and the

properties of the type conversion functions.

INT (X) Integer, real, complex, double | Converts X to integer Integer
REAL (X) Integer, real, complex, double | Converts X to real Real
DBLE (X) Integer, real, complex, double | Converts X to double precision | Double
DFLOAT (X) Integer, real, complex, double | Converts X to double precision | Double
[ CMPLX (X) __|lInteger, real, double | Result = (REAL (X),0.) __|Complex
[CMPLX(X)  |Complex | Result=x _  ___.....____|Complex
CMPLX (X,Y) |Integer, real, double Result = (REAL (X) ,REAL (Y) ) | Complex
ICHAR (X) A single character Converts X to integer Integer
CHAR {X) Integer Converts X to character Character

The type conversion function INT takes a single argument and converts it to
integer. INT (X)=X if X is an integer. If X is real or double precision, then INT
fruncates x to yield an integer. For example, INT (2.1)=2, INT (-3.5D0)=-3, etc.
If X is complex, say X = (a,b), then INT (X)=INT (a).

The type conversion function REAL takes a single argument and converts it to
real. REAL (X)=X if X is real. If X is an integer, then REAL (X) appends a decimal
point to X. Thus, REAL(2)=2., REAL(-10)=-10., etc. If X is a double precision
number, then REAL converis X to real by truncation (i.e. REAL (X) is approximately

the first six significant digits of X). If X is complex, say X=(a, b), then REAL (X) =a.
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Example 1.10:

In this book, we shail mostly use integer and real data (and occasionally iogical and character
data) since these are the most frequently needed data types in programming. After you
complete reading this text, however, you should have no difficulty in employing complex and
double precision constants and variables if the solution of a problem requires their use. The
use of complex variables is illustrated in this example.

Note how the type conversion function cMP1LX is utilized in this example: Since A, B,
and C are real variables, the value of B**2-4.0*A*C is also real. Inserting this real
expression into the sQRT function would lead to an error when it is negative (try it). While the
square root of a negative real number is not defined (because the square x° of a real number
X is always non-negative), the square root of a complex number with a negative real part is
well-defined and can be calculated using sQRT. (See Example 2.7 for an alternative way of
calculating the complex roots.)

PROGRAM QUADZ
C******************************'k********'k***********************************
C Program to solve a quadratic equation of the form
C A*YX**2 + B*X + C = 0
C where A, B, and C are real. Complex roots are allowed.
C****7\'***~k********'k*k"k*************************'k*****************************

‘IMPLICIT NONE

REAL A, B, C

COMPLEX ROOT1, ROOT2

PRINT*, 'Enter a, b, c: '

READ*, A, B, C

ROOT1 (=B + SQRT (CMPLX (B**2 - 4.0*A*C)))

ROOT2 (-B — SQRT(CMPLX(B**2 - 4.0*A*C)))

PRINT*, 'First root =', ROOT1

PRINT*, 'Second root =', ROOT2
c Check the results

PRINT*, 'A*ROOT1**2 + B*ROOT1 + C =', A*ROOT1**2 + B*ROOT1 + C

PRINT*, 'A*ROOT2**2 + B*ROOT2 + C =', A*ROOT2**2 + B*ROOT2 + C

END

/ (2.0%A)
/ (2.0%R)

The roots of x*+1 = 0 are calculated in the following sample run (note that there are
no real roots in this case):

Enter a, b, ¢: 1 0 1

First root (0.000000,1.00000)

Second root (0.000000,-1.00000)

A*ROOT1**2 4+ B*ROOT1 + C = (0.000000,0.000000)
A*ROQT2**2 + B*ROOT2 + C = (0.000000,0.000000)

]

Functions for truncating and rounding are similar to the type conversion
functions. They are described in the following table.

2 Remember that 7 cannot be represented by a finite number of digits.



32

AINT (X) Real, double Truncate the decimal part Same as argument
NINT (X) Real, double Round to nearest integer Integer
ANINT (X) |Real, double Round to nearest whole number | Same as argument

The truncation function AINT is different from the type conversion function
INT in that the value AINT returns is real or double precision (i.e. the decimal point
is preserved), whereas INT returns an integer value. For example, INT (4.2) is
equivalent to 4 (an integer) whereas AINT (4. 2) is equal to 4. 0 (a real number).
Another function that is useful in some applications is NINT. It takes a real or
double precision value as its argument and yields the nearest integer to the
argument. For example, NINT (15.9) yields 16 (whereas INT (15.9) is equal to
15), NINT (15.3) yields 15, and NINT (-15.9) is -16, the integer nearest to -15.9.
The function ANINT is similar to NINT, but the type of the value it returns is
“same as argument.” When X is double precision, ANINT (X) is equal to
DBLE (NINT (X) ). If X is real, then ANINT (X) is equivalent o REAL (NINT (X) ).
The library functions (like sQRT) that allow the use of more than one type of
argument are termed generic intrinsic functions. Those functions (like FLOAT) that
can be used with only one type of argument are named specific intrinsic functions.
We have seen that most of the mathematical functions are generic functions.
For example, the generic square root function SQRT can take a real, a double
precision, or a complex argument. In the older versions of FORTRAN, however,
SORT was a specific function that took only a real argument and returned a real
value. To handle a double precision argument, another specific function, namely
DSQRT had to be used. Yet another specific function, CSQRT, was employed to
calculate the square root of a complex number. Since SQRT can handle all three
types of arguments, there remains no need to use the functions DSQRT and CSQRT.
Specific functions such as these have been retained in FORTRAN mostly to provide
backward compatibility, i.e. to make sure that older programs using the mentioned
functions can be compiled using a FORTRAN 77 (or Fortran 90) compiler without
modification. A table containing these functions is provided below as a reference.

You should employ the generic versions of these functions whenever possible.
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DSQRT (X) Double SQRT
CSQRT (X) Complex Complex

DEXP (X) Double Double EXP
CEXP (X) Complex Complex

ALOG (X) Real Real LOG
DLOG (X) Double Double

CLOG {X) Complex Complex

ALOG10 (X) Real Real LOG10
DLOG10 (X) Double Double

IABS (X) Integer Integer ABS
DABS (X) Double Double

CABS (X) Complex Real

ISIGN (X,Y) Integer integer SIGN
DSIGN (X, Y) Double Double

AMOD (X, Y) Real Real MOD
DMOD (X, Y) Double Double

IDIM(X, Y) Integer Integer DIM
DDIM (X, Y) Double Double

MAXO (X,Y,...) |integer Integer MAX
MAX1(X,Y,...) |Real Integer

AMAXO (X, Y, ...) | Integer Real
AMAX1(X,Y,...) |Real Real

DMAX1 (X,Y,...) | Double Double
MINO(X,Y,...) [lInteger Integer MIN
MIN1(X,Y,...) |Real Integer

AMINO (X,Y,...) |integer Real
AMIN1(X,Y,...) [Real Real
DMIN1(X,Y,...) | Double Double

DCOS (X) Double Double cos
CCOS (X) Complex Complex

DSIN (X) Double Doubie SIN
CSIN(X) Complex Complex

DTAN (X) Doubie Double TAN
DASIN (X) Double Double ASIN
DACOS (X) Double Doubie ACOS
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DATAN (X) Double Double ATAN
DATANZ (X,Y) Double Double ATAN2
DCOSH (X) Double Double COSH
DSINH(X) Double Double SINH
DTANH (X) Double Double TANH

In addition to the generic type conversion, rounding, and truncating functions
discussed earlier, there are a number specific functions that have been inherited
from earlier versions of FORTRAN. These are shown in the following table,

IFIX (X) Real Integer INT
IDINT (X) Double Integer

FLOAT (X) Integer Real REAL
SNGL (X) Double Real

DINT (X) Double Double AINT
IDNINT (X) Double Integer NINT
DNINT (X) Doubie Double ANINT

IFIX and IDINT convert real and double precision arguments, respectively,
to integers. Since INT can handle both of these data types, it is more general and
can be used exclusively.

The library functions FLOAT and SNGL convert integer and double precision
numbers, respectively, to reals. When X is double precision, the function references
SNGL (X) and REAL(X) are interchangeable. Similarly, when X an integer,
FLOAT (X) and REAL (X) are equivalent. The function REAL can be used exclusively
to handle all four types of arguments.

The function DNINT is similar to ANINT, but it takes a double precision
argument only, and returns a double precision value. Thus, DNINT (X) is equal to
DBLE (NINT (X)). If X is double precision, then ANINT(X) is also equal to
DBLE (NINT (X) ). Recall that ANINT (X) is equivalent to REAL (NINT (X)) when X
is real.

What has been said above should not be construed to imply that all specific
intrinsic functions in FORTRAN are “redundant.” Functions such as CHAR, ICHAR,

DPROD, and the character functions are necessarily specific because of the tasks
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they carry out, and therefore there are no generic functions that can be used instead
of them. v

Character functions are those library functions that operate on character
constants and variables. Character functions will not be discussed in this chapter
(see Chapter 5). For completeness and for future reference, however, a list and brief
descriptions of these functions are given in the next table. Note that LGE, LGT, LLE,

and LLT are functions of type logical, and as such the values they return are either

.TRUE. or . FALSE. (see Chapter 2 for a description of the logical data type).

LEN(ch) Character Length of string Integer
INDEX({ch1,ch2) | Character svgﬁigo&rggs::f tring ch2 integer
LGE(ch1,ch2) Character ch1>ch2 Logical
LGT(ch1,ch2) Character ch1 > ch2 Logical
LLE{ch1,ch2) Character ch1<ch2 Logical
LLT(ch1,ch2) Character ch1 < ch2 Logical

Example 1.11:

The functions FLOAT and IFIX are type conversion functions. FLOAT takes an integer as its
argument and converts it to type real. For example, FLOAT (4) yields the real number 4. 0.
Similarly, IFIX converts a real number to an integer. In this case, the fractional part of the
real number is truncated, e.g. IFIX (5. 6) yields 5, an integer value.

The functions REAL and INT can be used instead of FLOAT and IFIX, respectively. If
the argument type is real, there is no difference (except in name) between the functions INT
and IFIX. Similarly, the functions REAL and FLOAT are equivalent when the argument is an
integer. The following program illustrates the use of these and other type conversion
functions.

PROGRAM CONV
c This program demonstrates the FORTRAN type conversion functions.
IMPLICIT NONE
INTEGER NUM
REAL A
DOUBLE PRECISION DA, DPI
COMPLEX C
C Assign Values to A, NUM, C and DPI
A = 3.0
NUM = 3
DPI = ACOS(-1.0D0O)
C = (1.0,-2.5)

C
PRINT*, 'NUM =', NUM
PRINT*, 'REAL(NUM) ="', REAL (NUM)
PRINT#*, 'FLOAT (NUM) =', FLOAT (NUM)

PRINT*, 'DBLE (NUM) =', DBLE (NUM)
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PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
PRINT*,
END

' DFLOAT (NUM)
'CMPLX (NUM)
¥ ¥

A

'INT (R)
TIFIX (A)
'DBLE (A)
'DFLOAT (A)
"CMPLX (A)

) 1

'DPI

'INT {DPI)
"IDINT (DPI)
'REAL (DPI)

' SNGL (DPI)
'"CMPLX (DPI)
t 1

'NUM/ 2

'REATL (NUM) /2
'FLOAT (NUM) /2
1] 1

'A/2
"INT(A) /2
TIFIX(A) /2
'C

'INT (C)
'REAL (C)
'DBLE (C)

' DFLOAT (C)

i

DFLOAT (NUM)
CMPLX (NUM)

A

INT (A)
IFIX{(A)
DBLE (A)
DFLOAT (A)
CMPLX (A)

DPI

INT (DPI)
IDINT (DPT)
REAL (DPI)
SNGL (DPI)
CMPLX (DPI)

NUM/2
REAT {NUM) /2
FLOAT (NUM) /2

A/2
INT (A)/2
IFIX{A)/2

Cc

INT (C)
REAL (C)
DBLE (C)
DFLOAT (C)

The output of the program should look like the following:

NUM
REAL (NUM)
FLOAT (NUM)
DBLE (NUM)
DFLOAT (NUM)
CMPLX (NUM)

A

INT (A)
IFIX(
DBLE (
DFLOAT (A)
CMPLX (A)

A)
A)

DPI

INT (DPI)
IDINT (DPI)
REAL (DPI)
SNGL (DPI)
CMPLX (DPI)

NUM/ 2
REAT {NUM) /2
FLOAT (NUM) /2

I

i

1l

3
3.00000
3.00000

3.00000000000000
3.00000000000000

3.00000
3
3

.00000,0.000000)

3.00000000000000
3.00000000000000

.00000,0.000000)

3.14159265358979

3

3
3.14159
3.14159

1
1.50000
1.50000

.14159,0.000000)
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A/2 = 1.50000

INT (A)/2 = 1
IFIX(A)/2 = 1

c = (1.00000,-2.50000)
INT(C) = 1

REAL (C) - 1.00000

DBLE (C) = 1.00000000000000
DFLOAT (C) = 1.00000000000000
Exercises:

15. Write a program to demonstrate the rounding and truncating functions. The output should
be similar to the following:

AINT (3.7) = 3.00000
AINT (3.7D0) = 3.00000000000000
DINT (3.7D0) = 3.00000000000000
ANINT (3.7) = 4.00000
ANINT(3.7D0) = 4.00000000000000
DNINT(3.7D0) = 4.00000000000000
NINT (3.7) = 4
NINT (3.7D0) = 4
IDNINT(3.7D0) = 4
NINT (-3.7) = -4
NINT (0.0) = 0

16. Develop and run several test programs to better understand the FORTRAN library
functions discussed in this chapter. Also consult the reference manual or the on-line help text
of the particular compiler you are using to learn about the other library functions (i.e. functions
not part of standard FORTRAN) provided by your compiler.

17. Write a program that will read a real value x and round it to the nearest two decimal
places. Hint: Use the NINT function.

1.9 Output Editing

So far in our programs we have been using the list-directed PRINT statement

PRINT*, output list
where the output list is a list of constants, variables, and expressions. This method of
writing output is referred to as list-directed output, which means that the type of an
output list item determines the form of the value printed.

You may have noticed that, with this printing method, the programmer has
limited control over the appearance of the output. For example, the displayed
number of digits after the decimal point of a real number and the horizontal spaces
between data values printed on the same line are automatically determined by the
compiler. Actually, it is possible for the programmer to indicate the exact appearance
of the displayed/printed data. This is accomplished through the use of user-
formatted output or output editing.

The exact form of a line of output (or, several lines of output) is described by
using a format specification. A format specification consists of a list of edit
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descriptors enclosed in parentheses. The most frequently used edit descriptors are

listed and described in the following table.

(which includes a sign
if it is negative). The printed number is right justified.

For printing a real or double precision value in a field of width w. The
number is rounded to d digits after the decimal point. The field width w
includes a sign if it is negative, the decimal point, and d. You must set
w>d+2 for negative numbers and w>d+1 for positive numbers. The
printed number is right justified.

Ew.d

For printing a real or double precision value in the exponential form.
The number is rounded to d digits after the decimal point. The field
width w includes a sign if it is negative, (possibly) a zero to the left of
the decimal point, the decimal point, the letter E, the width of the
exponent, and d. Use w>d+6 for positive values and w>d+7 for
negative values. The printed number is right justified.

For printing a character value. The field width is automatically
determined by using the length of the character value.

Aw

For printing a character value in a field of width w. The printed string is
right justified, i.e. the string is padded with blanks on the left if it
contains fewer than w characters. If the string consists of more than w
characters, the extra characters on the right are not printed.

nX

For skipping n horizontal spaces (i.e. n blanks are printed).

/ (slash)

For passing to the next line. Use n(/) to have n-1 blank lines between
two output lines, or to place n blank lines at the beginning or the end of
output.

Tn

To advance to position n of the output line before printing the next
item.

TLn
TRn

To print the next output item starting n positions before (TL) or after
(TR) the current position.

Lw

To print w—1 blanks, followed by T or F to represent a logical value.

To terminate format if there are no more output items.

In this table, n, w, and d represent integer constants; parameters (introduced in

Chapter 3) may not be used. A format specification has the following general form:

(desc; , desc, ,...).

where desc; , desc, ,... are edit descriptors. A format specification is used in

conjunction with a FORMAT statement as follows:

n FORMAT(descy, desc,,...).

where n is a unique statement label. This label is used (instead of *) in any PRINT

statement that will employ the output format specified in the FORMAT statement:
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PRINT n, output list

A FORMAT statement can be placed anywhere in the program between the
PROGRAM and END statements, and more than one PRINT statement can reference
the same FORMAT statement.

An alternative approach is to write the format specification as a character
string (enclosed in apostrophes) and place it directly in the PRINT statement:

PRINT ‘(descy, desc,,...), output list

Note that the format specification is separated by a comma from oufput list.

The quickest way to understanding how edit descriptors and format
specifications are used is to look at specific examples. Consider two integer
variables N and M, and a real variable A, which have the values 200, 35, and
3.6789, respectively. Then, the output of the program segment

PRINT 5, N, M, A
5 FORMAT (I5, 2X, I5, 4X, F5.2)

will be
Ozoo003500000013 . 68

where each O stands for one blank character. Note that each number is printed right-
justified within its specified field. Note also that the first column of the output line is
not printed: although the field width for the first data item is 5 (the edit descriptor
used for printing N is I5), the effective field width is 4 (one blank plus the number
200 appear within this field). As a general rule, you should avoid using column 1,
since anything printed there will not be displayed. The edit descriptor 2X causes two
blank characters to be printed after the value of N. The value of M is printed using the
next edit descriptor, I5. Four blank spaces are displayed by 4x. Because of the edit
descriptor F5.2 used for printing 2, its value 3.6789 is rounded (not truncated) to
two digits after the decimal point. The value of 2 in the memory, however, is not in
any way affected (and remains equal to 3.6789).

As noted above, an integer value is printed right-justified in its field. If there
are insufficient columns to display the integer and its sign (for example, if 13 is used
to print 1000), the value displayed depends on the compiler. Usually, a string of
asterisks will be displayed (try it). Similarly, if an insufficient number of columns is
specified when printing a real value using the edit descriptor F, many compilers

display a string of asterisks. If insufficient columns are specified (when using the edit
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descriptor Aw) to print a character string, then only part of the string that fits the
output field will be printed (see Exercise 21).
Cansider next printing a character string, say 'TEXT'. To that end, the edit

descriptor A can be used:

PRINT 30, 'TEXT'
30 FORMAT (1X,A)

The descriptor 1x is needed to skip the first column. An alternative is to use the

following approach (try both approaches and observe the output):

PRINT 30, ' TEXT'
30 FORMAT (A)

Note the leading blank in * TEXT' above. Yet another valid approach is as follows:

PRINT 30, 'TEXT'
30 FORMAT (A5)

Instead of using a FORMAT statement, you may write the format specification as a

character string and place it in the PRINT statement:
PRINT '(A5)', 'TEXT'

This approach may be particularly convenient when the format specification is short.
A character string can also be placed within a format specification. This is

termed apostrophe editing. The following is a simple example (try it):

PRINT 20

PRINT ' (1X, ''Second.'')'
20 FORMAT (1X, 'First.')

END

Note the two consecutive apostrophes placed on each side of the string
1second.'. These are needed because the format specification itself is a string
enclosed within apostrophes. (Recall that two consecutive apostrophes must be
used to represent a single apostrophe within a character string.) An additional level
of nested apostrophes would require twice as many apostrophes as the previous

level to make the apostrophes’ meaning clear. For example:

PRINT '(1X, ''Elif''''s Cooking House.'')'

The output of the program segment

PRINT 31, 'TEXT', 'TEXT', ‘TEXT'
31 FORMAT (A5, 2¥X, Al0, 2X, AZ)

will be
TEXTODOOLUTEXTHUTE
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Assume that five real numbers are to be printed on a line using the same edit
descriptor, say F8.3. This can be done by repeating the edit descriptor as many

times as required:

PRINT 7, A, B, C, D, E
7 FORMAT (1X, F8.3, 2X, F8.3, 2X, F8.3, 2X, F8.3, 2X, F8.3)

An alternative and more efficient approach is indicated in the following:

PRINT 7, A, B, C, D, E
7 FORMAT (1X, 4(F8.3, 2X), F8.3)

The E and F edit descriptors can be used to print double precision values.
Alternatively, the edit descriptor Dw. d (which is similar to Ew. d) can be employed.

Each edit descriptor must be associated with an output list item of the correct
data type. For example, the edit descriptor Iw should be used only to print integer
data values.

When a slash, /, is encountered in the middle of a format specification, the
current line is terminated and a new line is started. To terminate the current line, and
then to skip a line (i.e. to display a blank line) before the next line of output, two
consecutive slashes, //, can be used. Multiple slashes can be indicated using the
form n (/) , where n is a positive integer constant. If the slashes are in the middle of
a format specification, the number of blank lines displayed will be one less than the
number of consecutive slashes. If the slashes are placed at the beginning or at the
end of a format specification, then the number of blank lines printed will be equal to
the number of consecutive slashes. Commas are not necessary to separate
consecutive slashes or to separate slashes from other edit descriptors.

The last edit descriptor shown in the table is the colon (:) edit descriptor. It
terminates format control if there are no more items in the output list. This feature is
used to suppress output when some of the edit descriptors in the format specification

do not have corresponding data in the output list. See Exercise 26.

Exercises:

18. Write a program to print the integer constant 325 via user-formatted output. Try the
following edit descriptors: 12, 13, I4, I5, I6. Next, employ the same edit descriptors
to print -325. (Try both tasks with and without using the descriptor 1X to skip the first
column.)

19. Write a program to print the real constant 3.14159 via user-formatted output. Try the
following edit descriptors: 5.2, F5.1, F6.3, F4.0, F3.2. (Do not forget to use the
descriptor 1x to skip the first column.) Examine the output carefully.
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20. Write a program to print the real constant -4.576 via user-formatted output. Try the
following edit descriptors: F4.1, F6.2, F4.0, F9.5, F7.5. Make sure that you
understand the output.

21. Write a program to print the character constant 'DESK' using the following edit
descriptors: A, Al, A2, A3, A4, AS5.(What happens if you do not use the descriptor 1X
to skip the first column? Try it.)

22. A string value is printed right-justified in its output field. When the string is stored in a
character variable first and then the variable is displayed, however, the situation is a little
different. For example, if STATUS is of type CHARACTER*5, the assignment STATUS =
'OK!' stores the string oK followed by three blanks in variable sTATUS. Consequently,
when the value of STATUS is printed using format specification A or A5, FORTRAN
displays the string ok followed by three blanks. If STATUS is printed using format
specification A10, the value of sTATUS is displayed right-justified, so that five blanks
before the string OK and three blanks after Ok are seen on the screen. To observe these
points, type and run the following program:

PROGRAM CHARV
IMPLICIT NONE
CHARACTER*5 STATUS
PRINT 1, 'OK'
STATUS = 'OK'
PRINT 1, STATUS
PRINT 2, STATUS

1 FORMAT (1X, AD)

2 FORMAT (1X, Al0)
END

23. To understand the use of the slash descriptor better, type and run the following program:

PROGRAM SLASH

PRINT 1, 'Demonstration of the Slash Descriptor:',

1 'You can use two consecutive slashes two skip a line:',

2 'Use two slashes at the end of format to skip two lines:'
1 FORMAT(1X, A, /, 2(1X, A, //))

PRINT 2, 'This line printed using FORMAT statement with label 2.’
2 FORMAT (1X, A&, /)

PRINT 3,
1 'One slash at end of FORMAT st.2 resulted in one blank line.’,
2 'You don''t have to use commas around slashes for separation.',

3 'To observe this you can inspect FORMAT statement labeled 3.°
3 FORMAT(1X, A / 1X, A / 1X, A)
END

Note also that the characters 1, 2, and 3 used as continuation marks (typed in column 6) are
not in any way confused with the statement labels 1, 2, and 3 (typed in columns 1 to 5).
Notice the use of the edit descriptor 1x to skip the first column of each new output line. What
happens if you remove the descriptor 1x? (Try it.)

24. Care should be exercised when using the T edit descriptor. Specifically, position n of the
output line is normally position (n-1) of the display screen. This is because position 1 of the
output line is not displayed. (A line-control character is present at the first position. This will
be explained in Chapter 6.) Thus, the descriptor T10 will cause printing at column 9 of the
display, not column 10. Type and run the following program as an exercise:
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PROGRAM TAB1

PRINT 10, ‘'Demonstration of the T descriptor:’',

1 'T2 causes a start at position 1 of the display screen.',

2 'T3 advances to position 3 of output line (position 1°',

3 'is not printed, so) this is position 2 of the display.'
10 FORMAT(1X, A, /, T2, A, /, T3, A, /, 2X, A)

END

25. It was pointed out that a format specification can also be written as a character string and
placed in a PRINT statement. Another alternative is to use a character variable of sufficient
length to store the format specification. To observe this, type and run the following program.
Note that the three PRINT statements have equivalent effects.

PROGRAM FORMTS
IMPLICIT NONE
CHARACTER*20 FORML
INTEGER NUM1
REAL X
NUM1=5
X=ACOS (-1.)
FORM1=' (1X,I3,2X,F8.5)"
PRINT FORM1, NUM1, X
PRINT '(1X,I3,2X,F8.5)', NUMl, X
PRINT 1, NUML, X

1 FORMAT (1X,I3,2X,F8.5)
END

26. Type and run the following program. Next, remove the colon from the format specification
and compile/run the program again. What difference do you observe?

PROGRAM COLON
IMPLICIT NONE
INTEGER M, N

M =10
N = 20
PRINT 1, M

PRINT 1, M, N
1 FORMAT (1X, 'M=',13,:,2X,'N="',1I3)
END

The use of a character variable or a FORMAT statement may be
advantageous if (i) the format specification is so long that placing it in @ PRINT
statement will not be convenient, or (i) the same format specification will be used by
more than one PRINT statement. While a FORMAT statement can be placed
anywhere in the program, a character variable containing a format specification must
be defined (i.e. its value must be assigned) before it is used in a PRINT statement. it
is common practice to place all FORMAT statements together at the bottom or top of a
program. Alternatively, each FORMAT statement can be placed immediately after the
PRINT statement that references it.
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1.10 Programmer-Defined Functions

All of the programs we have studied so far consisted of a single part, i.e. a main
program. A main program starts with a PROGRAM statement and ends with the END
statement. There is another type of program unit in FORTRAN, namely a
subprogram. The two main types of subprogram in FORTRAN are subroutines and
functions. These two types of subprogram are also referred to as procedures.
While we shall study both of these subprogram types in great detail later (see
Chapter 4), an introduction to function subprograms is presented in this section.

We have already used several function subprograms, i.e. intrinsic functions
such as SQRT, MOD, COS, etc. These special subprograms are written by compiler
manufacturers because they are needed very frequently by FORTRAN
programmers. An advantage of library functions is that they are very well written, i.e.
they are efficient, accurate, and robust.

Often, however, the functions available in the function library are not
sufficient for the solution of a particular programming problem. FORTRAN makes it
possible for programmers to develop and use their own functions to solve such
problems. Programmer-defined functions are called external functions (as opposed
to the intrinsic functions of the language). The following is the most typical form of an
external function definition:

functype FUNCTION funcname(dummy argument list)
type declarations for dummy arguments
type declarations for local variables
function body
funcname = expression
RETURN
END

The functype specifies the type (INTEGER, REAL, LOGICAL, etc.) of the
result returned by the function. The function name funcname must obey the usual
rules for variable names (i.e., it must consist of one to six alphanumeric characters
with the first character being a letter). At least one statement assigning a value to
funcname must be included in the body of the function. The dummy argument list is
a list of symbolic names: constants or expressions cannot appear in this list. The
items that constitute the dummy argument list are separated by commas and
enclosed in parentheses. The RETURN statement transfers control back to the
program unit that has invoked the function. The function may be invoked in the main
program and/or in another subprogram (a subroutine or a function).



45

In a subprogram the END statement has the same effect as a RETURN
statement: therefore the RETURN statement can actually be omitted if it is
immediately followed by the END statement. A RETURN statement is necessary to exit
the function (and return to the program that invoked the function) before reaching the
END statement. We need, however, to learn more about FORTRAN (specifically, the
decision structures discussed in Chapter 2 must be studied) before this can be
exemplified.

A complete program may consist of a number of different program units.
Exactly one of these program units must be a main program unit. On the other hand,
there may be several subprogram units. Execution of the complete program will start
at the beginning of the main program unit.

The subprograms can be placed within the same file that contains the main
program unit. Alternatively, a subprogram may exist in a separate source file. In the
latter case, a separate object file corresponding to each source file is generated first.
These object files are then linked to form a single executable file.

Several example function subprograms are presented in this and the next
chapter. It is recommended that you read the above paragraphs again after studying
these examples.

Example 1.12:

By the definition of a radian, 2= radians = 360°, i.e. = radians = 180°. Therefore, given the
value of an angle in radians, we have

(angle in degrees) = 180(angle in radians)/ ©
The function DEGREE given below employs this formula to carry out the desired conversion.

PROGRAM CONV
C Driver routine to test the function DEGREE

IMPLICIT NONE

REAT, DEGREE

REAL ANGLE

PRINT*, 'Enter angle in radians: '

READ*, ANGLE

PRINT*, ANGLE, ' radians = ', DEGREE(ANGLE), ' degrees.'

END
e}

REAT. FUNCTION DEGREE (THETA)
C********‘k*****‘k***********************************************************7\-
c Function to convert radians to degrees
C THETA: Angle in radians (input to the function)
C*‘k*****-k*******‘k***********************************************************

IMPLICIT NONE

REAL THETA

REAL PT

PI = ACOS(-1.)

DEGREE = 180.*THETA/PI

RETURN

END
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The main program CONV reads in the angle in radians, stores this value in the real
variable ANGLE, and then invokes DEGREE to compute the angle in degrees.

When DEGREE is invoked by the main program, the value that ANGLE has at that
instant is substituted for THETA (ANGLE is the actual argument, THETA is the corresponding
dummy argument: see the relevant discussion later in this section), and control is transferred
to the function.

Next, the instructions within the function are executed. Once all the steps in the body
of the function are completed, the RETURN statement returns control back to the main
program. Execution is then terminated in the main program by the END statement. (Execution
would have continued in the main program if there had been other executable statements
between the PRINT statement and the END statement.) Here is a sample run of CONV:

Enter angle in radians: 3.1415926
3.14159 radians = 180.000 degrees.

The main program CONV was written with the sole purpose of testing the function
DEGREE and demonstrating its use. Now that DEGREE has been tested, it can be used in other
programs. The foliowing are some examples of valid uses of DEGREE:

PRINT*, 'Cosine of'!, DEGREE(3.14159), ' degrees is', C0S(3.14159)
GAMMA = DEGREE (3.1415%9/2. + 0.1)

BETA DEGREE (ASIN(1.))

ALFA DEGREE (A + 2*B)

where ALFA, BETA, GAMMA, A, and B are real variables. In the first example, the actual
argument is a constant. In the second and fourth cases, the actual arguments are
expressions. In third case, we have a function reference as the actual argument. When an
expression or a function reference appears as an actual argument, its value is first evaluated,
and then that value is passed to the subprogram.

When a subprogram is invoked, the constants, variable names, function
references, and the expressions that appear in the argument list are termed actual
arguments. In Example 1.12, DEGREE is invoked in the main program within the

PRINT statement

PRINT*, ANGLE, ' radians = ', DEGREE(ANGLE), ' degrees.’

Here ANGLE is referred to as an actual argument, implying that it is expected to have
a certain value at this point in the program unit that is invoking the function. On the
other hand, the names in the argument list of a subprogram definition are called

dummy arguments. Thus, in the function definition

REAL FUNCTION DEGREE (THETA)

END
the symbolic name THETA is a dummy argument, meaning that it does not represent
a location in memory. An actual numerical value is assigned to THETA only after the

function is invoked in the main program.
Note that the name of the actual argument (ANGLE) is different from the name

of the dummy argument (THETA) used in the function definition: this is completely
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permissible. Correspondence between a dummy argument and an actual argument
is established via the positions of the arguments, and not the names of the
arguments. Thus, the first actual argument in a function reference corresponds to the
first dummy argument in the function definition, the second actual argument
corresponds to the second dummy argument, etc.

Furthermore, there is name independence between programs. That is, the
variable names used in a subprogram have no relation to the names in the main
program and other subprograms. For example, PI is declared as a real variable in
FUNCTION DEGREE. This declaration is focal to the function and is not visible outside
the function definition. We could declare and use PI inside the main program, say,
as an integer variable representing an entirely different quantity.

Notice also that the type of the function is declared in the main program with

the statement

REAL DEGREE

This is necessary because of the IMPLICIT NONE statement used in the main
program: When the IMPLICIT NONE statementis used in a program unit, the types
of all functions used by that unit must be declared explicitly within that unit.
Furthermore, the IMPLICIT NONE statement placed in a program unit does not
have any effect outside the body of that unit. Therefore, a separate TMPLICIT

NONE statement must be included within each subprogram and the main program.

Example 1.13:

While the square root of a number can be calculated using the SQRT function, a similar library
function for the calculation of cubic root does not exist in standard FORTRAN. We can,
however, define our own cubic root function as shown below.

REAL FUNCTION CBRT (X)
Chh kAR bk hh Ak A kk R Ak AR R E AR KA AR R A Ak Rk k kA KK AR I I Ak d Ak h ook ok hokkkkkkdokhdk kA dok

C Calculates cube root of positive real number X
C***************************************************************************

IMPLICIT NONE

REAL X

CBRT = EXP(LOG(X)/3.)
RETURN

END

The function makes use of the following mathematical properties of the exponential and
logarithmic functions:

blnd=1nA4®* and e"“=C

Note that CBRT takes a real number as input, i.e. it cannot be used to compute the cubic root
of another type of number. The following main program illustrates how CBRT can be employed
{type and run it):
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PROGRAM CRROOT
C Driver routine to test CBRT
IMPLICIT NONE
REAL Y, CBRT
PRINT*, 'Enter a real number: '

READ*, Y

PRINT*, 'Cube root of', Y, ' is', CBRT(Y)
PRINT*, 'Compare (number)**(1./3) =', ¥Y**{(1./3)
END

What happens if you attempt to calculate the square root of an integer, a double precision, or
a complex number using CBRT? (Try it.)

Remark: The main program CBROOT and the function subprogram CBRT can be placed within
the same file. They can also be typed into different files. Each file (i.e. the source code in
each file) should be separately compiled in the latter case. The object files generated in this
manner must then be linked to build a single executable file. You should learn how to carry
out these steps with the FORTRAN system you are using.

Example 1.14.

To calculate the logarithm of a number to base b, the following formula can be utilized:

log, X = log,, X
log,, b

FUNCTION LOGB given below implements this formula:

REAT, FUNCTION LOGB (B, X)

C*'k*k~k***********‘k*********************‘k*************************************,

C Function calculates logarithm of X to base B
C*~k*************************************************************************

IMPLICIT NONE

REAL B, X

LOGB = LOG10(X)/LOG10(B)
RETURN

END

To test and demonstrate this function, type and run the following main program:

PROGRAM LOGART
c Driver routine to test and demonstrate LOGB
IMPLICIT NONE
REAL LOGB, B, X, RESULT
PRINT*, 'Enter base B (a positive number): '
READ*, B
PRINT*, 'Enter ¥X: '
READ*, X
RESULT = LOGB(B,X)
PRINT*, 'log of X w.r.to base B is', RESULT
END

What happens if you type a non-positive number (0 or a negative number) as input?

Exercise:

27. Write a functioh that can be used to convert angle in degrees to radians. Write a main
program to test the function.



