PROGRAMMING IN

FORTRAN

Fourth Edition

Omer Akgiray

PERMISSION TO COPY AND DISTRIBUTE:

This book may be copied and distributed in digital or printed form
provided that the front cover that contains the name of the author
and the title of the book is included with each copy. Individual
chapters may be copied and printed in the same way.

e-mail:

omer.akgiray@marmara.edu.tr

49

CHAPTER 2: DECISION STRUCTURES

2.1 Logical Constants and Variables

There are only two logical constants. They are true and false, and are represented
in FORTRAN as .TRUE. and . FALSE., respectively. Note that the words TRUE and
FALSE are preceded and followed by periods. When logical data are printed, the
letters T and F, representing . TRUE. and . FALSE., respectively, are printed without
the enclosing periods. Storage locations which are used to store logical values which
can be varied are called logical variables. Logical variable names must be declared
by the type statement LoGICAL. For example,

LOGICAL A, MOON, GOOD

declares A, MOON, and GOOD as logical variables. Examples of the use of logical
constants and variables will be given later in this chapter.

2.2 Relational Expressions and the Single-Alternative Decision Structure

FORTRAN provides a decision-making capability in the form of a construct known as
the block-1F structure. The simplest form of this structure is the single-alternative
decision form and has the following general format:

1F (logical expression) THEN

Task
ENDIF

A logical expression (sometimes also called a logical condition) is an expression
which is either true or false (i.e., . TRUE. or .FALSE.). When the block-IF structure
is executed, the logical expression is first evaluated. If the expression is true, then
the program statements that constitute Task are executed. If the /ogical expression is
false, then Task is skipped and execution continues with the first statement following
the ENDIF statement.

We shall first discuss a special class of logical expressions, hamely relational
expressions. A relational expression consists of two arithmetic expressions
connected by a single relational operator. The following are the relational operators
used in FORTRAN:

50

.EQ. equal to

.NE. not equal to

.GT. : greater than

.LT. less than

.LE. less than or equal to
.GE. greater than or equal to

It should be noted that each relational operator has four characters, two letters
preceded and followed by a period'. Some examples of mathematical conditions and
their equivalent FORTRAN relational expressions are given below:

A<B A.LT.B
A% £B (A**2) .NE.B
(A + 2B) =2 4Jc (A+2*B) .GE.SQORT (C)

Assume A, B, and ¢ have been assigned the values 1.0, 2.0, and 100.0,
respectively. Then, the first two relational expressions above have the value

.TRUE., the third has the value . FALSE..
Before studying example programs employing the IF statement, it will

be appropriate here to introduce the sTop statement. A STOP statement can be
used to terminate program execution before reaching the END statement. This
statement is often used when a program has detected some error from which it

cannot recover. It has the following general form:

STOP message

where the optional parameter message is either a character constant or an integer
constant between 0 and 99999. For example, the statement
STOP 'Error detected!’
displays the message Error detected! and terminates programs execution.
Note that the sToP statement and the END statement are not equivalent. As
noted before, every FORTRAN program unit (including subprograms) must contain
exactly one END statement. The sTOP statement, on the other hand, may be used at

more than one point within a program or not used at all.

! When FORTRAN was being developed in 1950s, it was not possible to punch signs such as < and >
onto cards. As a result, all relational operators consisted of two letters enclosed between periods.

51

Before FORTRAN 77, it was necessary to use a STOP statement somewhere
in the program (not necessarily at the end) to terminate execution. The END
statement was not an executable statement and its only function was to signal to the
compiler that there were no more lines to be compiled®>. When the execution
sequence of the program statements is rather straightforward, it often happens that
execution is terminated at only one place, i.e. at the end of the program. In such a
case, before the advent of FORTRAN 77, one would have to place a STOP
statement just before the END statement. Although many FORTRAN programmers
still have the habit of placing a sTOP statement just before the END statement of the
main program, the STOP statement is not necessary if it is inmediately followed by
the END statement.

Note also that the END statement of a subprogram has the same effect as a
RETURN statement, whereas the END statement in the main program has the same

effect as a sTOP statement.

Example 2.1.

Suppose we want to write a program that reads a number interactively, calculates the square
root of the number, and displays the resuit on the computer screen. The intrinsic function
SORT will be used for this purpose. The square root of a negative real number, however, is not
defined. It would therefore be useful to detect a negative number and print an informative
error message when a negative number is entered by the user of our program.

PROGRAM SQROOT
C***
c Program to calculate the square root of a real numberxr
C NUM: A real value entered by the user
C***

IMPLICIT NONE

REAL NUM

PRINT*, 'Enter your number: '

READ*, NUM

IF(NUM.LT.0) THEN

PRINT*, 'Square root of a negative number is not defined.’
STOP

ENDIF

PRINT*, 'Square root is', SQRT (NUM)

END
Two sample runs of the program are given below:

Enter your number: 4
Square root is 2.00000

Enter your number: -1
Square root of a negative number is not defined.

Fortran 90 allows the use of <, <=, >, >=, ==, and /= instead of .1LT., .LE., .GT., .GE., .EQ,, and .NE,,
respectively. Note that the older forms .LT., .LE. etc. are still valid in Fortran 90.
% Organick and Meissner, p.76.

52

The program first displays a prompting message, informing the user that a number is
to be entered. Once the value of NUM is read, it is compared with zero. Note that the relational
expression

NUM.LT.O

compares a real variable (NUM) with an integer constant (0 without a decimal point). This is
permissible because mixed-type expressions are allowed in FORTRAN 77°. The compiler
handles such a mixed-type logical expression as follows. The integer constant is first
converted to type real by appending a decimal point. Then comparison between two real
values are carried out.

If NUM is zero or positive, then the relational expression NUM.LT.O0 has the value
.FALSE., and the program execution continues with the statement immediately following the
ENDIF statement:

PRINT*, 'Sguare root is', SQRT (NUM)

The program execution is then terminated by the END statement. If, on the other hand, NUM is
negative, then the value of the relational expression NUM.LT.0 will be .TRUE., and the
statements within the block-IF structure are next executed. The first statement

PRINT*, 'Square root of a negative number is not defined.’

gives information to the user about why the square root of the specified number cannot be
calculated. Next, the program execution is terminated by the sTop statement. Notice that, in
this case, the PRINT statement that follows the ENDIF statement is never executed. This
example illustrates how the sTOP statement can be used to terminate the execution of a
program before reaching the END statement.

Although in this text we shall always indent the statements that constitute the
body (i.e., Task) of a block-TF structure, this is of course not required. it is, however,
a good practice to follow as it enhances the readability of programs. This point will
become more apparent as we start using more complicated control structures such
as the multiple-alternative decision structure (Section 2.3), and especially nested
block-IF statements (Section 2.6) and nested loops (Chapter 3).

2.3 The Multiple-Alternative Decision Structure

The double-aiternative decision structure has the following general format:

IF (logical expression) THEN

Task
ELSE

False Task
ENDIF

The logical expression is first evaluated. If the expression is true, then the program
statements that constitute Task are executed and those that constitute False Task
are skipped. If the logical expression is false, then Task is skipped and False Task is

* Expressions of the mixed-type were not permitted in standard FORTRAN 66. Be that as it may, most
of the compilers commercially available in early 1970s allowed mixed-type expressions (Organick and
Meissner, p.59 and p.276).

53

executed. In either case, execution continues with the first statement following the
ENDIF statement.

Example 2.2:

In this example we look at a subprogram that determines if a given integer is even or odd.
Since there are only two possible answers (even and odd), it seems reasonable to implement
this subprogram as a logical function which can return two possible values (.TRUE. or
.FALSE.). Consider the following function which returns the logical value . TRUE. when the
input argument N is odd:

LOGICAL FUNCTION ODD (N)

C***

c Function returns .TRUE. if N is odd, returns .FALSE. otherwise
C**********************************-k*-k-k*-k**'k'k******************************-k

IMPLICIT NONE

INTEGER N
IF(N/2*2 .EQ. N)THEN
ODD = .FALSE.
ELSE
ODbD = .TRUE.
ENDIF
RETURN
END

Alternatively, one can implement a function named EVEN that returns . TRUE. when
N is even (make sure to do it). The following main program (which itself contains an example
of the block-IF construct) has been written to test FUNCTION ODD:

PROGRAM ODDNUM
C Driver routine for FUNCTION ODD
IMPLICIT NONE
INTEGER NUM
LOGICAL ODD
PRINT*, ‘'Enter the number to be tested: '
READ*, NUM
IF (ODD (NUM)) THEN
PRINT*, 'The number is odd.'
ELSE
PRINT*, 'The number is even.'
ENDIF
END

A sample program output follows:

Enter the number to be tested: 4
The number is even.

After the number (NUM) has been read in, the block-IF statement is executed. The
first step is the evaluation of the logical expression of the block-IF structure. The logical
expression here consists of a single function reference, i.e. ODD (NUM). Control then passes
into the function and the statements within the function are executed. The dummy argument N
is assigned the value of the actual argument NUM. (Remember that there is name
independence between program units.) Next, the value of N/2*2 is compared with N. Let us
take a close look at this step of the function subprogram. In the arithmetic expression

N/2*2
division is carried out first, i.e. the expression is equivalent to

(N/2)*2

54

Since both N and the constant 2 are integers, integer arithmetic is used in the evaluation of
this expression. In particular, any remainder resulting from the division of two integer values is
simply discarded. If N is even, the remainder of the division process N/2 is zero, and N/2 is
exactly equal to half of N, and therefore N/2*2 is equal to N. When N is odd, however, the
remainder of the division is not zero and N/2 is less than half of N. For example, if ¥ is 3, then
N/2 is 1 (which is less than 1.5) and N/2*2 has the value 2 which is different from N. Thus, if
the value of the relational expression

N/2*2.EQ.N

is .TRUE., then N is even. Otherwise, N is odd. The name of the function is assigned the value
.TRUE. if N is odd; otherwise it is set equal to .FALSE.. Control is then returned to the calling

(i.e. main) program. All of this happens during the evaluation of the logical condition of the
block-IF structure in the main program. If this logical expression evaluates to .TRUE., then the

string ' The number is odd.' is displayed. Otherwise, the string 'The number is
even. ' is displayed.

The single-alternative and the double-alternative forms discussed earlier are
special cases of the multiple-alternative decision structure (also called block-IF).
The general form of the block-IF structure is as follows:

IF (logical expression,;) THEN
Task,

ELSE IF (logical expression,) THEN
Task,

ELSE IF (logical expression,) THEN

Task,
ELSE

False Task
ENDIF

The logical expression; is first evaluated. If it is true, then Task, is executed and all
the other tasks are skipped. If logical expression, is false, then Task; is skipped and
logical expression. is next evaluated. Thus, logical expression, logical expressions,
etc. are evaluated until an expression, say logical expressiony, that evaluates to true
is reached. In that case Task, is executed. If none of the conditions holds true, False
Task is evaluated. In all cases, execution is continued with the first statement
following ENDIF. If False Task is empty, that is, if there are no statements to be
executed when all the conditions (Jogical expression; through logical expression,)
evaluate to false, then the word ELSE may be omitted.

Example 2.3:
The sign function sgn(x) is commonly defined as follows:

sgn(x) = 1if xis greater than zero or if x is zero
sgn(x) = -1 if x is strictly less than zero

55

The implementations of the FORTRAN sign transfer functions ISIGN, DSIGN, and
SIGN are based on the above definition of the sign function. In particular, ISIGN(1,0) is
equalto 1 and SIGN(1.,0.) is 1., because sgn(0) = 1 according to its definition. Suppose a
certain application requires that we take sgn(0) to be zero. In such a case, we cannot directly
use the library functions in our computations. We can, however, implement our own sign
transfer function. Here is one way this can be done:

PROGRAM MYSIGN
C Main program to test ISIGN2

IMPLICIT NONE

INTEGER NUMBER, ISIGN2

PRINT*, 'Please enter a number: '

READ*, NUMBER

PRINT*, 'Sign =', ISIGN2(1, NUMBER)

END
C

INTEGER FUNCTION ISIGN2(M, N)
C***
C User-defined sign transfer function
C Works with integer arguments only
C***~k*******************************

IMPLICIT NONE

INTEGER M, N

IF(N.LT.O)THEN

ISIGN2 = -ABS (M)
ELSE IF(N.EQ.O)THEN

ISIGN2 = 0
ELSE

ISIGN2 = ABS (M)
ENDIF
RETURN

END

Note that this function handles integer arguments only. You must write two other functlons
say DSIGN2 and $IGN2, to handle double precision and real arguments, respect:vely

Exercises:

1. The library function MOD returns the remainder of the division of its first argument by the
second. Modify FUNCTION oDD of Example 2.2 to employ MOD to determine if N is odd or not.

2. Insert the following statement just before the END statement in PROGRAM MYSIGN:
PRINT*, 'ISIGN(1,NUMBER) =', ISIGN(1l,NUMBER)

Recompile and run the program with the following values: 1, o, and -2. Compare the values
returned by ISIGN with those calculated by ISIGN2.

3. Write a program to read in three real numbers, and determine and display the largest of the
three numbers (without using library functions).

4. In Example 1.13 we studied a simple function for the calculation of cube root. The following
is a more generalized version of that function:

REAL FUNCTION CBRT (X)

c***

C Calculates cube root of real number X
C***

4 Recall that generic library functions such as SIGN, SQRT, etc. can be used with different types of
arguments. It is not possible to define generic external functions in FORTRAN 77. Fortran 90 brings a
solution to this problem by allowing programmers to refer to two or more functions using the same
generic name (see Chapter 7).

56

IMPLICIT NONE

REAL X
IF(X.LT.0.)THEN
CBRT = -EXP (LOG(-X)/3.)

ELSE IF(X.GT.0.)THEN
CBRT = EXP(LOG(X)/3.)
ELSE
CBRT = 0.
ENDIF
RETURN
END

Note that the algebraic equality —3/(—x) = 3/x is utilized to handle negative values of x. Write

a main program to test this function. What happens if you use the expression X** (1./3) to
calculate the cube root of a negative number? (Try it.) Notice also how the zero argument
situation is handled. (Remember that logarithm of zero is not defined.)

2.4 Compound Logical Expressions

A relational expression is a special type of logical expression. Logical expressions
may also consist of logical constants (. TRUE. or . FALSE.) or logical variables used

by themselves. For example, if FOUND is a logical variable, then the statement
IF (FOUND) THEN
PRINT*, 'Solution found.'
ELSE

PRINT*, 'Cannot find solution.'
ENDIF

will print the statement solution found. if FOUND has the value . TRUE.. If, on the
other hand, FOUND has the value .FALSE. when this segment of the program is
being executed, the message printed will be Cannot find solution..

Logical expressions more complex than the simpler expressions just
mentioned can be constructed using the following FORTRAN logical operators:

AND. .OR. .NOT. .EQV. NEQV.

Given any two logical expressions logexp1 and /ogexp2, we can form the following

compound logical expressions:

Iogekp1.AND.Iogexp2

logexp1.0R.logexp2
NOT.logexp1

logexp1.EQV.logexp2

logexp1.NEQV./logexp2

57

it should be noted that the words AND, OR, NOT, EQV, and NEQV are preceded and
followed by periods. The values of these compound expressions depend on the
values of Jogexp1 and Jogexp2 and are as follows (T and r stand for . TRUE. and

. FALSE., respectively):

logexp1 Jlogexp2 logexp1.AND.logexp2 logexp1.0R.Jogexp2

T T T T
T F F T
F T F T
F F F F

.NOT. is a unary operator that changes the value of any logical expression
from .TRUE. to . FALSE. or from . FALSE. to .TRUE.:

logexp1 .NOT.logexp1

T F
F T

The operators .EQV. and .NEQV. are used to test logical expressions for
equivalence and nonequivalence, respectively. For example, /logexp1.EQV.Jogexp2
has the value .TRUE. if fogexp71 and /Jogexp2 have the same value (both . FALSE.

or both .TRUE.). The properties of these operators are summarized below:

logexp1 logexp2 logexp1.EQV.logexp2 logexp1.NEQV.Jogexp2
T T T F

T F F T
F T F T
F F T F

Note that the analogous relational operators .EQ. and .NE. are used to
compare arithmetic (integer, real, double precision, complex) and character data,
whereas .EQV. and .NEQV. are used to compare logical values. The latter two
operators are most often used to simplify the structure of logical expressions. The
following two expressions, for example, are equivalent in their effect:

(A.LE.B.AND.Y.GT.X) .OR. (A.GT.B.AND.Y.LE.X)
A.LE.B .EQV. Y.GT.X

58

Assume that A, B, and C are real variables, NAME1 and NAME2 are of type
character and FLAG is of type logical. The following are valid logical expressions:

A.GT.0.0
(A.LE.B) .AND. (C.GT.1.)
FLAG

.NOT.FLAG

(A.LT.2.) .OR. (.NOT.FLAG)
NAME1.NE.NAMEZ

Any combination of the above logical expressions using .AND. and .OR. are also
valid logical expressions. For example

((A.LT.2.).0R. (.NOT.FLAG)) .AND. (NAMEl.NE.NAMEZ)
(A.GT.0.0) .AND. (.NOT.FLAG)

Similarly, any combination of the above expressions using .EQV. and .NEQV. are

valid logical expressions. For example

(NAME1.NE.NAME2) .EQV. (.NOT.FLAG)

(((A.LT.2).0R. (.NOT.FLAG)) .AND. (NAME1.NE.NAME2)) .NEQV. (A.GT.0)
For clarity, extra parentheses and blanks have been used in some of the

above expressions. For example, the following three expressions have the same
meaning for the compiler:

(A.LT.2.) .OR. {(.NOT.FLAG)
(A.LT.2.).0R. (.NOT.FLAG)
A.LT.2..0R..NCT.FLAG

in forming complicated logical expressions, the following hierarchy of
operations (precedence of operators) should be remembered:

1. All subexpressions within parentheses are evaluated first. In the case of
nested parenthesized subexpressions, the innermost subexpression is

evaluated first.

2. A parenthesis-free subexpression is evaluated using the folldwing hierarchy:
i) Arithmetic operations
a) First precedence: >
b) Second precedence: *,/
C) Third precedence: +, -
i) Relational operators (.EQ., .NE., .LT., .GT., .GE., .LE.)

iii) Logical operators

a) First precedence: .NOT.

59

b) Second precedence: .AND.

c) Third precedence: .OR.
d) Last precedence: .EQV., .NEQV.
3. Operators within the same parenthesis-free subexpression and at the same

level of hierarchy (such as .EQ. and .LE.) are evaluated from left to right.

We see that arithmetic operations are performed first. Relational expressions
are next evaluated before compound logical expressions. Among the six relational
operators, there is no priority and relational operations are carried out from left to
right. When in doubt, it is better to use parentheses to explicitly specify the desired
grouping of operands and operators. Furthermore, it is recommended that extra
parentheses and blank spaces be used when such usage enhances the clarity and
legibility of a program. For example, assuming X, Y, Z, A, B, and C are real
variables, the expression

(A.LT.B) .OR. ((A.EQ.C) .AND. (B.NE. (X+Y/Z)))

and its equivalent

A.LT.B .OR. (A.EQ.C .AND. B.NE. (X+Y/Z))

are easier to understand than the (also equivalent and correct) statement

A.LT.B.OR.A.EQ.C.AND.B.NE.X+Y/Z

Example 2.4.

In this example we will look at a function subprogram that can be used to determine if a given
year is a leap year or not. Remember that a leap year is a year containing 366 days with
February 29 as the extra day. The function is named LEAPYR, and is a logical function that
returns . TRUE. if the given year is a leap year; returns . FALSE. otherwise.

A given year is a leap year if it is evenly divisible by 4 and not by 100, or it is evenly
divisible by 400. For example, 1999 is not a leap year (1999 is not evenly divisible by 4),
whereas 2000 is a leap year (evenly divisible by 400). Similarly, year 1200 is not a leap year
(it is evenly divisible by 100 but not by 400). Notice how a compound logical expression is
used in the program to implement the definition of a leap year.

LOGICAL FUNCTION LEAPYR (YEAR) .
Codedededekhkkkkh kA kR kAR RAR XK AR A AR dk ok ok hhkhhkhhk bk k Ak hh kKKK AR KR A KRR KKKk ko

c Returns .TRUE. if YEAR is a leap year; returns .FALSE. otherwise
C********************'k'k***
IMPLICIT NONE
INTEGER YEAR, REM4, REM100, REM400
REM4 = MOD(YEAR, 4)
REM100 = MOD(YEAR, 100)
REM400 = MOD (YEAR, 400)
IF{ (REM4.EQ.0 .AND. REMI100.NE.O) .OR. REM400.EQ.0)THEN
LEAPYR = .TRUE.
ELSE
LEAPYR = .FALSE.
ENDIF
RETURN
END

60

The function employs the variables named REM4, REM100, and REM400 to store the
computed remainders of the year after division by 4, 100, and 400 respectively. The extra
parentheses around the expression REM4.EQ.0 .AND. REM100.NE.O are actually not
necessary since .AND. has higher precedence than .or.. Similarly, extra blanks are used
within the compound logical expression to improve readability. The following version,
therefore, would also be perfectly valid (although less legible): '

IF (REM4.EQ.0.AND.REM100.NE.0.OR.REM400.EQ.0) THEN

Note that the following version would also give correct results in this case (why?):
IF(REM4.EQ.0 .AND. (REMIOO.NE.O .OR. REM400.EQ.0))THEN
The following is a main program that can be used to test FUNCTION LEAPYR:

PROGRAM LEAP
IMPLICIT NONE
INTEGER YEAR
LOGICAL LEAPYR
PRINT*, 'Enter the year to be tested: '
READ*, YEAR
IF (LEAPYR (YEAR)) THEN
PRINT*, 'It is a leap year.'
ELSE
PRINT*, *‘No, it is not a leap year.'
ENDIF
END

Example 2.5:

This example provides another illustration of the use of compound logical expressions
constructed using the operators .AND. and .OR..

PROGRAM LETGRD
c Program determines and prints the letter grade
C corresponding to a score between 0 and 100.
IMPLICIT NONE
INTEGER SCORE
CHARACTER*1 GRADE, LETTER
PRINT*, 'Enter the score (between 0 and 100): '
READ* . SCORE
LETTER = GRADE (SCORE)
IF(LETTER.EQ. '*')THEN
PRINT 1, 'Score entered', SCORE, 'is out of range:'
PRINT 1, 'You must enter a value between 0 and 100.'

ELSE
PRINT 1, 'Score =', SCORE, '=> Letter Grade =', LETTER
ENDIF
1 FORMAT (1X, A, :, 1X, I4, 1X, A, :, 1X, A)
END

CHARACTER*1 FUNCTION GRADE (SCORE)
C-k************************k**
C Returns letter grades 'A', 'B', 'C', 'D', or 'F' for specified
c SCORE between 0 and 100. Returns '*' if SCORE is out of range.
C**-k-k*********************************

IMPLICIT NONE

INTEGER SCORE

IF{SCORE.LT.0 .OR. SCORE.GT.100)THEN

GRADE = '*'

ELSE IF(SCORE.GE.S0 .AND. SCORE.LE.100)THEN
GRADE = 'A'’

ELSE IF(SCORE.GE.80 .AND. SCORE.LE. 89)THEN
GRADE = 'B’

ELSE IF(SCORE.GE.70 .AND. SCORE.LE. 79)THEN
GRADE = 'C’

ELSE IF(SCORE.GE.60 .AND. SCORE.LE. 69)THEN

GRADE = 'D’

ELSE IF(SCORE.GE. 0 .AND. SCORE.LE. 59)THEN
GRADE = 'F!

ENDIF

RETURN

END

It may be noted that, the block-1F structure within the function could be replaced by

IF(SCORE.LT.0 .OR. SCORE.GT.100)THEN

GRADE = '*'

ELSE IF(SCORE.GE.90)THEN
GRADE = 'A’

ELSE IF (SCORE.GE.80)THEN
GRADE = 'B'

ELSE IF(SCORE.GE.70)THEN
GRADE = 'C'

ELSE IF(SCORE.GE.60)THEN
GRADE = 'D'

ELSE
GRADE = 'F’

ENDIF

61

This version is simpler (requires less typing). It was decided, however, that explicitly
specifying the range of scores that gets each letter grade made the logic of the program more

easily understandable.

Example 2.6:

Logical expressions are most frequently used to specify conditions in decision statements, and
(as we shall see in the next chapter) in DO WHILE loops. They may also be used in
assignment statements involving logical variables. This is usually done to simplify the listing

of conditions in a block-IF structure. An example is provided below.

PROGRAM ORDER
C Reads in three numbers and determines thelr relative sizes
C >= means greater than or equal to
¢ > means strictly greater than

IMPLICIT NONE

REAL X, Y, Z

LOGICAL L1, L2, L3

PRINT*, 'Enter X, Y, Z: '

READ*, X, Y, Z

1Ll = X.GE.Y
12 = X.GE.Z
L3 = Y.GE.Z

IF(L1 .AND. L3)THEN
PRINT*, 'X >= Y >= Z'
ELSE IF(L1 .AND. L2)THEN
c L1.AND.L2 is .TRUE., but L1.AND.L3 is .FALSE.

o! This can happen only if L3 is .FALSE, whereas Ll and LZ are

DRINT*, 'X >= Z > ¥'
ELSE IF(L1)THEN

ol 1.1 is .TRUE., but both L1.AND.L2 and L1.AND.L3 are .

c This can happen only if both L2 and L3 are .FALSE
PRINT*, 'Z > X >=
ELSE IF(LZ)THEN
C L2 is .TRUE., but L1 is .FALSE.
PRINT*, 'Y > X »= Z!
ELSE IF(L3)THEN :
C 1,3 is .TRUE., Ll and L2 are .FALSE.
PRINT*, 'Y >= Z > X'
ELSE
L1, L2 and L3 aré all .FALSE.
PRINT*, 'Z > ¥ > X'
ENDIF
END

Q

.TRUE.

62

A few sample runs are shown below:

Enter X, Y, Z: 1. 2.4 3.0

Enter X, Y, Z: 4 2 3
X > 4 > Y

Enter X, Y, Z: -1 2 0
Y >= 2 > X

By the way, the method used in this program is not a particularly good way of ordering
three numbers according to their sizes. It is used here merely to exempilify the application of
logical expressions.

2.5 The Logical IF Statement

Frequently, the Task in the single-alternative decision structure

IF (logical expression) THEN

Task
ENDIF

consists of a single FORTRAN statement. In such a case, the more compact logical
IF statement can be used. The general form of logical IF is as follows:

1F(logical expression) dependent statement

The logical expression is first evaluated. If it is true, the dependent statement is
executed. Otherwise, the dependent statement is skipped. The dependent statement
may be any executable statement except another logical TF statement or a control
structure (such as a block-IF or a DO loop).

The logical IF statement is the “ancestor” of the block-IF construct, and was
actually the most powerful decision-making statement in FORTRAN before the
advent of FORTRAN 77°. It is still very useful and examples of its application can be
found in the subsequent chapters.

2.6 Nested 1F Blocks

It is possible to have one block-IF statement lying completely within another block-
TF statement. Block-TF statements occurring in this manner are said to be nested.
In forming nested structures, the following rule must be observed: All nested
structures must be wholly contained within a single statement group of the
structure(s) they appear in. With reference to the multiple-alternative decision
structure described in Section 2.3, each task (statement group) may contain one or

5 A new decision making form, namely the CASE construct, has been introduced in Fortran 90.

63

more block-1F statements, but the inner blocks must not overlap two or more tasks
of the outer structure.

Example 2.7:

The following program is a considerably generalized version of PROGRAM QUAD (cf. Example
1.7) which we have studied earlier.

PROGRAM QUAD3
C***
C Program to solve a quadratic equation of the form
o} A*X**) + B*X + C = 0
C The coefficients A, B, and C are real.
C***

IMPLICIT NONE

REAL A, B, C, ROOT1, ROOT2, DISCR, REALPT, IMAGPT, EPS
c*********t*k***

C We will accept that DISCR=0 if ABS (DISCR).LE.EPS
C***

EPS = 1.0E-06

c***

C Read in the coefficients of the equation.
C***

PRINT*, 'Enter A, B, C: '

READ*, A, B, C
C***
C Check if the user-entered coefficients define a guadratic egquation.

c If not, take appropriate action and print informative messages.
c***
IF(A.EQ.0.)THEN
IF(B.EQ.0.)THEN
IF{C.EQ.0.)THEN
PRINT*, 'A =B = C = 0 => Trivial equation: 0 = 0’
ELSE IF(C.NE.O.)THEN
PRINT*, 'The coefficients entered are absurd:’
PRINT*, 'A =B =0 but C =", C
PRINT*, ‘'cannot satisfy A*X**2 + B*X + C = 0
ENDIF
ELSE IF(B.NE.O.)THEN
ROOT1 = -C/B
PRINT*, 'A =0 => B*X + C = 0 (a linear eguation}’
PRINT*, 'The solution is -C/B =', ROOT1
ENDIF
STOP
ENDIF

C***

C Determine the roots of the gquadratic egquation.
C***

DISCR = B**2 - 4.0*A*C
IF{DISCR.LT.-EPS)THEN
PRINT*, 'There are no real roots.'

REALPT = -B/ (2*A)

IMAGPT = SQRT (ABS (DISCR))/ (2*A)

PRINT 1, 'First root =', REALPT, ' + ', IMAGPT, 'i'

PRINT 1, 'Second root =', REALPT, ' - ', IMAGPT, 'i'
1 FORMAT (1X, A, F7.3, A, F7.3, A)

ELSE IF(ABS(DISCR).LE.EPS)THEN
PRINT*, 'There is a single real root. '
ROOT1 = -B/{(2*A)
PRINT*, 'The root is ', ROOT1

ELSE
ROOT1 (-B + SQRT({DISCR))/(2.0*A)
ROOT2 {-B — SQRT(DISCR))/{2.0%*A)
PRINT*, 'There are twe distinct real roots:'
PRINT*, 'First root =', ROOT1
PRINT*, 'Second root =', ROOT2

ENDIF

END

(]

64

Notice how indention is employed to improve the legibility of the program and to make the
logic of the block-IF structures clearer. Note also how indention is especially helpful in the
case of nested structures. Although it is neither required nor universally obeyed, many
professional programmers follow the practice of using two or four blank characters as
indention. It is recommended that you use at least two blanks for this purpose.

The program first checks if the coefficients entered by the user of the program define
a quadratic equation: The equation is quadratic only if the coefficient of ¥, i.e. a, is nonzero.

If a is zero, then we are not really dealing with a quadratic equation, but the program
still examines various possibilities and prints appropriate informative messages. For example,
if a is zero but b is nonzero, then we have an equation of the form bx+c=0 which can be
solved for x.

If both a and b are zero, the equation reduces to the form c¢=0 which is trivially
satisfied if the user-specified value of ¢ is indeed zero. This is obviously not a very interesting
case, but is nevertheless correctly identified and dealt with by the program.

The remaining possible case when a is zero, i.e. ¢ being nonzero while both a and b
are zero, constitutes a user-error. The program detects this error and prints out an error
message stating that the coefficients entered cannot satisfy the equation ax’+bx+c=0.

it should be remembered that real arithmetic on a computer is only an approximation.
Two numbers which are mathematically equal, for example, may differ very slightly if they
have been calculated in different ways. As a result, it is usually not sensible to compare two
real numbers for equality. The program, therefore, checks if |b2-4ac|<s (where ¢ is a very
small number) rather than testing for the equality b’=4ac (or b’-4ac=0) to establish that the
discriminant is essentially zero and there is a single real root.

One final point that should be made about this program is that it is not a particularly
good program for calculating the roots of a quadratic equation. It is presented here mainly to
demonstrate the use of nested block-IF statements. A better solution of the problem would
require a more careful consideration of the limits of computer arithmetic. Certain values of a,
b, and ¢, for example, can cause overflow and the program to abort, while certain other
values may result in underflow and subsequent incorrect results. In certain other cases, round-
off errors caused by the subtraction of two nearly equal values may cause a significant error in
one of the calculated roots’.

Exercise:

5. Write a main program that will read four sides (say, a, b, ¢, and d) and will determine
whether these four sides could form a polygon. To form a polygon, the entered sides should
satisfy all of the following conditions:

O<a, 0<b, 0<c,0<d (atleastthree of them should be strictly positive)
a < b+ctd
b < a+c+d
c < at+b+d
d <atb+c

% A detailed discussion of the quadratic equation can be found in Numerical Recipes by Press et al. and
Fortran 90/95 for Scientists and Engineers by Chapman.

