PROGRAMMING IN

FORTRAN

Fourth Edition

Omer Akgiray

PERMISSION TO COPY AND DISTRIBUTE:

This book may be copied and distributed in digital or printed form
provided that the front cover that contains the name of the author
and the title of the book is included with each copy. Individual
chapters may be copied and printed in the same way.

e-mail:

omer.akgiray@marmara.edu.tr

231

CHAPTER 7: FORTRAN 90

7.1 General Remarks

As noted in Chapter 1, Fortran 90 contains all of FORTRAN 77. Any standard
FORTRAN 77 program or subprogram is therefore a valid Fortran 90 program or
subprogram, and should behave in an identical manner. Thus the large number of
existing FORTRAN 77 programs can continue to be utilized for as long as necessary
without the need for modification. Ellis et al. note that “it is precisely this care for the
protection of existing investment that explains why FORTRAN, which is the oldest of
all current programming languages, is still by far the most widely used language for

scientific programming™

. As a matter of fact, a great advantage of using an
established language like FORTRAN is the wealth of existing software upon which
programmers can draw’. Such software is normally in the form of libraries of
subroutines and functions®. The backward compatibility of Fortran 90 means that

these FORTRAN 77 libraries can be used directly by Fortran 90 programs.

7.2 Fortran 90: Introducing a New Style

Although many programmers probably continue to write Fortran 90 programs in a
style not too far removed from that permitted by FORTRAN 77, the new standard
introduces several new features that lead to a new style which is worth learning and

adopting. In this section we shall learn many of these new features of Fortran 90.

The Fortran 90 Character Set

Programs in the Fortran 90 language are written using the 58 characters (26
alphabetic characters, 10 digits, and 22 symbois) taken from the Fortran 90
Character Set:

Upper case alphabetic characters: atoz
Lower case alphabetic characters: ato z
Digits: 0to 9
Symbols: O + - */ ., "=5$% ()
'Y s sy <> 7

! Ellis et al. (1994).
2 Smith (1995).
* See, for example, Numerical Recipes by Press et al. (1986).

232

where [represents the space, or blank, character. Note that the last 9 symbols
listed above were not in the FORTRAN 77 Character Set. Note also that lower case
letters are treated as identical to upper case letters except, of course, when they
appear within character strings. Thus, for example, READ and read are considered

identical whereas the character constants 'string' and 'STRING' are not.

Names in Fortran 80

The rules that must be followed in the formation of Fortran 90 names are as follows:

¢ A name may contain up 31 characters.
¢ A name must begin with a letter, either upper case or lower case.
« A name may contain the letters (A to z and a to z), the digits (0 to 9), and

the underscore character (_).

Free Form of Source Files

Fortran 90 allows the use of a free form in typing programs. In the free form,

statements can be written anywhere on the line. The rules are as follows:

1. A statement can be typed starting anywhere on a line.

2. A line containing an exclamation mark ! as the first non-blank character is a
comment line (see the next subsection for more details).

3. A line may contain more than one statement. A semicolon ; must be used to
separate successive statements on a line.

4. A trailing ampersand & is used to indicate that a statement is continued on the
next line. A statement may have a maximum of 39 continuation lines.

5. A statement label consists of up to 5 consecutive digits (a number from 1 to
99999) which precedes the statement. The label is separated from the statement
by at least one blank.

6. There may be any number of blanks between successive words in a Fortran 90
statement, as long as there is at least one. They will be treated by the compiler
as though there was only one blank.

Note that the old fixed form of writing programs, which owed its origin to

punched cards, is still acceptable in Fortran 90. You should, however, be consistent

233

in your style: use either the fixed form or the free form in a program. When writing

new programs the use of the free form is recommended.

Comments Lines and Trailing Comments

In FORTRAN 77, a comment can be written on a line by typing "c" or *“+” in column 1
of that line. An exclamation mark “!” may also be used to initiate comments in
Fortran 90. It is not necessary, however, to place ! in the first column when using the
free form. If the first non-blank character of a line is a !, that line is a comment line.
Furthermore, a comment, preceded by !, may follow any Fortran statement or

statements on a line. This is termed a trailing comment. For example:

READ *, X, Y ! Read two real numbers

Continuation Lines

if the last non-blank character in a line is an ampersand, &, then this means that the

statement is continued on the next line. For example,

CALL least squares(x, y, n, &
&m, b)

is identical, as far as the compiler is concerned, with
CALL least squares(xX, y, n, m, b)
Notice that the first non-blank character in the second line is also an ampersand, and

the statement is continued from the character after that ampersand. Omitting the

ampersand in the continuation line would also be acceptable in this particular case:

CALL least squares(x, Yy, 0, &

m, b)
Here the first non-blank character (m) on the continuation line is not an ampersand.
Therefore, the effect is as if the whole of that line follows the previous one (excluding
the ampersand):

CALL least squares(x, Yy, T, m, b)

Since the extra spaces come between items in the list of arguments, they do not
have any effect. Remember, however, that blanks within character strings are

significant.

234

If the ampersand occurs in a character context (in the middle of a character
string enclosed in quotes or apostrophes), then the first non-blank character on the

next line must be an ampersand. For example,

PRINT *, 'Please type the values of x, y, z &
&in that order: '

has the same effect as

PRINT *, 'Please type the values of X, y, 2 in that order: '

Character Constants

In FORTRAN 77 only apostrophes could be used to delimit character constants. In
Fortran 90, a character string constant may also be enclosed between double

guotation marks:

PRINT *, 'This is a character constant',” and so is this.”

As long as the same character is used at the beginning and at the end, it does not
matter which is used. When an apostrophe or a quote must be included in a
character string, however, the choice is important.

PRINT *, “This string's got an apostrophe in it" &
' and this string contains a "quotation’!’

" Note that a single apostrophe is used to indicate contraction or possession when the
character string is enclosed between quotation marks. Thus, "I don't remember”
and “Murat's book” are valid character constants. When using a FORTRAN 77
compiler one would have to type 'I don''t remember’ and "™Murat''s
book", respectively. (Note that '' is two adjacent apostrophes, not a quotation
mark “.) The need for double apostrophe or double quote rarely arises in Fortran 90.
Thus

PRINT *, 'This string''s got an apostrophe in it?, &

””‘ »

» and this string contains a “quotation

is also valid, but the previous version that avoids this double apostrophe and double

quote is preferable.

235

Type Declaration Statements

In Fortran 90 there is a new method for declaring variables. Some examples are as

follows:

REAL :: X, V, Z

INTEGER :: first integer, second integer, third_integer
LOGICAL :: found, flag

COMPLEX :

:a, b, c
DOUBLE PRECISION :: wvarl, wvar?2

Character variables can be declared in any one of the following three forms:

CHARACTER (LEN = length) :: namel, nameZ,
CHARACTER (length) :: namel, nameZ, ...
CHARACTER*length :: namel, nameZ,

. ..

¢« s o

Each of the variables declared in one of these ways will hold exactly Iength
characters. The full form (the first version above) resuits in greater clarity and its use

is recommended. The following is also valid (but is not recommended):

CHARACTER (LEN = length) :: namel, nameZ*length2, &
name3, named4*length4, ...

In this case name1 is of length length, as are any other variables (such as name3)
in the list without a specific length specification. name2 has a length of length2 and

name4 has a length of 1ength4.

Arrays are declared using the DIMENSION attribute. For example,
REAL, DIMENSION(100) 1l X, Y, Z
has the same effect as
REAL x(100), x(100), x(100)
and
REAL :: x(100), x(100), x(100)
Note that the older DIMENSION statement is still valid (and should not be

confused with the DIMENSTON attribute). We could therefore use the alternative form

REAL x, vy, Z
DIMENSION x(100), x(100), =x(100)

As noted in Chapter 3, however, it is more efficient to declare the type and the size

of an array using a single statement.

236

The following statement is also valid in Fortran 90:

REAL, DIMENSION(20) :: x, vy, a{l0), b, c(100)

In this approach the value specified in the DIMENSION attribute applies to all
variables which do not have their own array size specification. For clarity, however, it

is advisable to use a separate declaration for each array size:

REAL, DIMENSION(20) :: X, v, b
REAL, DIMENSION(10) :: a
REAL, DIMENSION(100) :: ¢

The most general form of an array declaration is as follows:

type, DIMENSION({low;:high;, low,:high;, ..., low,:high,) :: &
array 1, array 2,

where type is REAL, INTEGER, etc. As noted in Chapter 3, both zero and negative

subscripts are allowed. Remember that Fortran allows up to seven subscripts (n < 7).

The END Statement

Execution of the END statement brings the execution of the main program unit to an
end, and control is returned to the computer's operating system. In Fortran 90, the
END statement may take any one of the following three forms:

END

END PROGRAM
END PROGRAM name

Similarly, the END statement at the end of a function can take any of the

following forms:

END
END FUNCTION
END FUNCTION name
In the case of a subroutine, one may use any one of the following three
alternative forms:
END
END SUBROUTINE
END SUBROUTINE name
where name is the name of the program unit in question. When the END statement is

executed in a subprogram, it causes control to return to the calling program unit.

237

Example 7.1:

Consider the following simple Fortran 90 program. Type and run it using a Fortran 90
compiler. Note the use of two PRINT statements on a single line.

PROGRAM example 1
IMPLICIT NONE ! A standard Fortran 90 statement
! Program illustrates some new features of Fortran 90
CHARACTER (len=40)::message_ 1, message 2
message_1 = 'Welcome to Fortran 90!
message 2 = 'Fortran 90 is a powerful language.'
PRINT*, message 1l; PRINT*, message 2;

END PROGRAM example 1 B

Initial Values and Parameters

Note that the type declaration form with a double colon is an alternative to the older
(but still valid) form without a double colon. The simple declarations,

INTEGER num 1, num_ 2

INTEGER :: num 1, num 2

for example, are entirely equivalent. The newer form, however, is required when
making use of certain new features of Fortran 90. Two of these new features which
are not available when using the older form are inclusion of initial values in variable
declaration and the use of the PARAMETER attribute to define a named constant (i.e.
a parameter). The following are some examples of initialization in type declaration
statements:

INTEGER :: max iter = 50

CHARACTER (LEN=20) :: name = 'Unknown'
REAL :: x, y=2.5, a, b, c=1.e-06

Remember that the DATA statement is used in FORTRAN 77 to assign initial
values. Similarly, the PARAMETER statement is used in a FORTRAN 77 program to
define a named constant. Fortran 90 allows the programmer to define a named
constant via the PARAMETER attribute in a type declaration statement. For example,

instead of writing

INTEGER max_iter
PARAMETER (max_iter = 100)

one can write

INTEGER, PARAMETER :: max iter = 100

238

The following is another valid example:

REAL, PARAMETER :: pi = 3.14159, pi half = pi/2.0

Note that this statement is valid because it is evaluated from left to right. If the two

parameters were typed in the reverse order then there would be an error.

Relational Operators

The six relational operators have two different forms in Fortran 90 (cf. Footnote 1 in
Chapter 2). The newer forms are <, >, ==, /=, <=, and >= corresponding to the older

and still valid forms .nT., .GT., .EQ., .NE., .LE.,and .GE..

7.3 Derived Data Types

Fortran 90 allows programmers to define their own data types. These new data types
are derived from the six intrinsic data types (REAL, INTEGER, COMPLEX,
LOGICAL, CHARACTER, DOUBLE PRECISION) and/or previously defined new

data types. A derived data type is defined using the following format:

TYPE new_type
component definition

END TYPE new_type

There may be as many component definitions as needed. Consider the following

example data type:

TYPE person

CHARACTER (LEN = 15) :: first name, last_name
CHARACTER (LEN = 15) :: father name

INTEGER age

CHARACTER :: sex

END TYPE person

Once such a new type is defined, variables of that type can be declared. For
example,

TYPE (person) :: nalan, murat

A constant value of a derived type is written using what is called a structure

constructor.

239

nalan = person('Nalan', 'Yakin', "Mehmet', 22, 'F')
murat = person('Murat’, 'Kara’, *Hasan', 25, '™M')

A component of a variable of a derived data type is referred by following the variable
name by a percentage sign and the name of the component. When murat grows

one year older, for example, one would set
murat%age = murat%age + 1

In case murat and nalan are married, one can write
nalan%$last name = murat%$last name

A previously defined derived data type can be used in defining a new type.

Consider, for example, the following type definition:

TYPE employee

TYPE (person) :: employee
CHARACTER (LEN=25) :: department
REAL :: salary

END TYPE employee

As this example illustrates, a component name can be the same as data type name
(employee), but it will be clearer if the names are kept distinct. The following

segment illustrates the assignment of values to a variable of type employee:

TYPE (employee) 1:: murat
nurat%employee$sex = M’
Example 7.2:

Consider the following program that illustrates the use of a derived data type. Type and run
the program. Note that this program could be written without using a derived data type and
other new features of Fortran 90 (e.g. long variable names, free form of typing, etc.) As an
exercise, rewrite the program in FORTRAN 77. Which version would you prefer (in terms of
readability, elegance, ease of writing, etc.)?

it may be noted that the program assumes that February contains 28 days, i.e. the
possibility of a leap year is not taken into account. This deficiency will be removed when we
consider this problem again in Example 7.9.

PROGRAM tomorrows date
IMPLICIT NONE -
TYPE date
INTEGER month
INTEGER day
INTEGER year
END TYPE date

INTEGER, DIMENSION(12) :: days per _month = &
(/31,28,31,30,31,30,31,31,30,31,30,31/)
TYPE (date) :: today, tomorrow

PRINT*, "Type today's date (dd mm yyyy): "
READ*, today%day, today$month, today%year

240

IF(today%day /= days per month (today%month))THEN
tomorrow%day = today%day + 1
tomorrowdmonth = today3%month
tomorrow$year = today®year

ELSE IF(today%month == 12)THEN ! End of year
tomorrowdday = 1
tomorrowdmonth = 1
tomorrowdyear = todayl%year + 1

ELSE ! End of month
tomorrowsday = 1
tomorrowsmonth = today%month + 1
tomorrow®year = today%year

ENDIF

PRINT '({1X,A,I3,".",I2,".",T4)', "Tomorrow's date is", &

tomorrow%day, tomorrow$month, tomorrowdyear
END PROGRAM tomorrows_date

7.4 The INTENT Attribute

The INTENT attribute is one of the atiributes that may follow the double colon in a
type declaration statement. This attribute can be used only for a dummy argument in
a subprogram and takes one of three forms:

e INTENT (IN) informs the compiler that the dummy argument is an input
argument, and the subprogram is not allowed to change its value.

e INTENT (OUT) informs the compiler that the dummy argument is an
output argument, i.e. it is used to retum information to the calling program
unit. The value of the argument will be undefined on entry to the
subprogram. It must therefore be given a value by some means before
being used in a context that requires a value (e.g. in an expression).

e INTENT (INOUT) informs the compiler that the dummy argument may be
used for transfer of information in both directions.

If an attempt is made to modify a dummy argument with the INTENT (IN)
attribute, for example, the compiler will detect this mistake at compile-time, as
opposed to having a hard-to-detect error that manifests itself at execution-time.
While the use of the TNTENT attribute is demonstrated in the following examples, a
more complete understanding of how the INTENT attribute can be utilized to
minimize certain programming errors requires that we learn about explicit procedure

interfaces (cf. Section 7.9).

Example 7.3:

Review the program of Example 5.9. That program utilizes two user-defined functions,
namely STRLEN and BEGSTR, to print a character variable without the trailing or leading

241

blanks stored in the variable. The part of that program that generates a full name without the
redundant blanks is rewritten here as a character function:

CHARACTER (LEN=*) FUNCTION full name (title, first_ name, mid name, surname)
' Joins title, first name, middle name, and the last name
t to form a full name with a single space between each word.
IMPLICIT NONE
CHARACTER (LEN=*), INTENT(IN)::title, first name, mid name, surname
full name = TRIM(ADJUSTL(title))//' '//TRIM(ADJUSTL(first name))//' '&

//TRIM(ADJUSTL (mid name))//*' *//ADJUSTL(surname)
END FUNCTION full_name

The INTENT attribute is used here to indicate that the dummy arguments title,
first name, mid name, and surname are to be used for input only.

Fortran 90 contains two new library functions, namely TRIM and ADJUSTL, that
obviate the need to employ user-defined functions such as STRLEN and BEGSTR (Chapter 5).
The intrinsic function TRIM returns the value of the input argument with any trailing blanks
removed. ADJUSTL returns the value of the input argument with the leading blanks removed
and the same number of blanks added at the end.

A main routine to test the above function is given below. Note that the lengths of the
character variables title, first name, mid name, surname, and the length of the
character value returned by FUNCTION full name are all declared in the main program; the
function is designed to handle varying character lengths. While this kind of flexibility may not
be necessary in this simple case, it will be indispensable when you develop code for more
meaningful and useful character processing applications.

PROGRAM hello 2
! Main program to demonstrate the use of FUNCTION full name
IMPLICIT NONE
CHARACTER (LEN=15) :: title, first name, mid name, surname
CHARACTER {LEN=63) , EXTERNAL :: full name '
PRINT*, 'Type your full name in the form requested.’
PRINT*, 'Title (Mr.,Mrs.,Ms.,Dr.,etc.): '
READ*, title
PRINT*, 'First name: '
READ*, first name
PRINT*, 'Middle name: '
READ*, mid_name
PRINT*, 'Last name: '
READ*, surname
PRINT*, 'Hello ', full name(title, first_name, mid name, surname)
PRINT*, 'May I call you ', TRIM(ADJUSTL({first_name)),'?’
END PROGRAM hello_2

Note that the EXTERNAIL atfribute can be used as illustrated here instead of a
separate EXTERNAL statement.

7.5 The cask Construct

Fortran 90 introduced the cAsSE construct, which is an alternative to the block-IF

structure in certain situations. The CASE structure has the following form:

SELECT CASE (case expression)
CASE {(case selector)

block of statements
CASE (case selector)

block of statements

CASE DEFAULT
block of statements
END SELECT

242

where case expression is either an integer expression, a character expression
or a logical expression. A real expression cannot be used here. The CASE DEFAULT
statement is optional and it may be omitted. When SELECT CASE statement is
encountered, case expression is first evaluated. The block of statements which
follow the appropriate cask statement (if any) is then executed. The case

selector may take one of the following four forms:

value

low value:

:high value

low value:high value

The case selector may also be a list of any combination of these. If none of the
case selector values or value ranges matches the value of case expression,
then the block of statements following the CASE DEFAULT statement (if present) is
executed. If there is no CASE DEFAULT statement, then the CASE structure is exited
without any code being executed. The use of the CASE structure is best explained

with an example.

Example 7.4:

Review the program of Example 3.14. In that program, we have employed the computed GO
To statement “to select a case.” The CASE struciure is @ much better form of selection than
the computed Go TO statement, and it should be used when writing new programs. Compare
the following version of the program with that given in Example 3.14:

PROGRAM seasons

! Program determines the season of the year
! for a given month number between 1 and 12.
IMPLICIT NONE

INTEGER month

! Read month of the year
PRINT*, 'Enter month number (between 1 and 12): '
READ*, month
! Determine the season
SELECT CASE (month)
CASE(1,2,12)
PRINT*, 'Season is winter.'
CASE{(3:5)
PRINT*,6 "Season is spring.'
CASE(6:8)
PRINT*, 'Season is summer.'
CASE(9:11)
PRINT*, 'Season is autumn.'’
CASE DEFAULT
PRINT*, month, ' is not a valid month.'
END SELECT
END PROGRAM seasons

243

Note that because the case expression is an integer variable (month), the case selectors
must be expressed as integer constants. If the value of month is 1, 2, or 12 (representing
January, February, and December, respectively), then the string 'Season is winter.' is
printed. If the value of month is less that 1 or larger than 12, then the statement

PRINT*, month, ' is not a valid month.’

will be executed. Note that the second CASE statement CASE(3:5) could alternatively be
written as CASE(3,4,5). Similarly, CASE(6:8) could be replaced by CASE(6,7,8),
etc. Note also that the CASE statements could be placed in any order without affecting the
result of the program.

The following points regarding the CASE construct should be remembered:

The decision criteria in the CASE construct must not overlap. As a result of this, the
order in which the CASE statements are placed does not matter. On the other hand,
the order in which the decision criteria of a block-IF structure are evaluated may be
important when the decision criteria overlap. Consider, for example
IF (temperature > 30)THEN

PRINT*, 'Hot.'
ELSE IF (temperature > 15) THEN

PRINT*, 'Warm.'
ELSE

PRINT*, 'Cold.’
ENDIF

If the value of temperature is 35, for example, both of the conditions
temperature > 30 and temperature > 15 will be .TRUE. (i.e. the two
criteria overlap). If the decision criteria are written in the following different order,
then, an incorrect result (the message 'Warm. ') will be obtained:
IF (temperature > 15)THEN

PRINT*, 'Warm.'
ELSE IF (temperature > 30) THEN

PRINT*, ‘'Hot.'
ELSE

PRINT*, 'Cold.?
ENDIF

In general, the CASE structure is more appropriate than the block-IF
construct when the various alternatives are mutually exclusive, and the order in
which they are evaluated is unimportant. Since the order of the CASE statements
does not matter, the CASE DEFAULT statement does not have to be placed as the
last casE statement. For clarity, however, it may be good practice to place it either

as the first or the last CAsSE statement.

244

Exercises:

1. Recall the programs of Example 5.4. Consider also the following function subprogram.
Write a Fortran 90 main program to test this function. Note how the CASE construct is
employed. Note also the use of the Foriran 90 functions IACHAR and ACHAR. Does the
function handle the Turkish characters (e.g. §, ¢, etc.) correctly? Would this function work as
intended on a processor employing the EBCDIC code?

CHARACTER FUNCTION change_case(char)

! Changes the case of the argument if it is alphabetic
! Returns char unchanged if it is not alphabetic
IMPLICIT NONE
CHARACTER, INTENT (IN)::char
INTEGER, PARAMETER:: upper to lower = IACHAR{'a')-IACHAR('A'")
SELECT CASE{char)
CASE('A':'Z")

change case = ACHAR(IACHAR (char)+tupper to lower)
CASE('a':'z") -

change case = ACHAR (IACHAR (char)-upper to_lower)

CASE DEFAULT ! Not alphabetic
change_case = char
END SELECT

END FUNCTION change case

7.6 The DO. . .END DO Construct

The DO. . .END DO structure and the EXIT statement have already been discussed
in Chapter 3. There, it has been shown that all types of iteration (i.e. Simple iteration,
Do-While iteration, Do-Until -iteration, and Break iteration) can be implemented
employing the DO. . .END DO structure in conjunction with the EXIT statement. If
you have access to a Fortran 90/95 compiler, therefore, it is recommended that you
use this control structure instead of the older form of the Do loop (which uses

statement labels) and the Do WHILE loop (which is less flexible).

Example 7.5:
Consider N measurements x; i=7, ...,N. The arithmetic mean x of the measurements is
1 N
X=— Y X,
N

The standard deviation s of the set of measurements is defined as:

N N 2
N}:xf—(EZJ;]
_ =1 =1
- NV -1)

Remember that sténdard deviation is a measure of the extent of scatter in the data. Here is a
program that implements these formulas:

§

PROGRAM stat analysis

IMPLICIT NONE

INTEGER :: count = 0, n

REAL :: std dev, sum x=0., sum x2=0., X, X avg

245

! Get input, accumulate sums

DO
PRINT*, 'Enter value: '
READ*, x
IF{ x < 0.) EXIT
count = count + 1
sum X = sum X + X
sum _x2 = sum x2 + x*xX
END DO

! Check if input data are sufficient

IF{(count <= 1)THEN
PRINT*, 'Less than two values were entered.’
STOP 'Execution terminated.’

ENDIF

! Calculate arithmetic mean and standard deviation

n = count

X avg = sum x/n

std dev = SQRT{ (n*sum x2-sum x**2)/n/(n-1}))

! Print results

PRINT*, 'The mean is: ', x_avqg

PRINT*, 'Standard deviation: ', std dev

END PROGRAM

Example 7.6:

Consider again the problem of reading and analyzing a set of exam scores (cf. Examples 3.4
and 3.8). The following program employs a count-controlled DO loop to read and sum the
grades. Note the use of the Fortran 90 funclion HUGE.

PROGRAM exam results
IMPLICIT NONE
INTEGER :: sum = 0, score, i, n
INTEGER :: minimum = HUGE(l), maximum = -HUGE(1l)
REATL :: average
PRINT*, 'Enter number of scores: '
READ*, n
IF(n < 1) STOP 'Number < 11!’
PRINT*, 'Now type', n, ' numbers one by one:'’
DO i =1, n
READ*, score
IF(score < 0. .OR. score > 100.) STOP 'Illegal input!'’
sum = sum + SsScore
maximum = MAX (score, maximum)
minimum = MIN{score, minimum)

END DO

average = NINT(REAL(sum)/n)

PRINT*, ‘Highest score: ', maximum

PRINT*, 'Lowest score : ', minimum

PRINT '(1X,A,F6.2)', 'Average : ', average

END PROGRAM
7.7 Modules

A complete program usually consists of a number of program units, of which exactly

one must be a main program. Execution of a program always starts at the beginning

246

of the main program unit. Function subprograms, subroutine subprograms, and block
data program units are the other types of program unit in FORTRAN 77. A new type
of program unit, called a module, has been introduced in Fortran 0.

A module starts with an initial statement of the form
MODULE module_name
and ends with an END statement which takes any one of the following forms:

END MODULE module_name
END MODULE
END

The purpose of a module is quite different from that of a procedure. A module
is written to make some or all of the entities declared within it accessible to more
than one program unit. As will be apparent as we proceed, modules can be very
useful in a number of different situations and they give considerable power and
flexibility to the Fortran 90 programming language.

One use of modules has to do with global accessibility of constants,
variables, and derived type definitions. Thus, a module allows a set of constants,
variables, and/or derived type definitions to be made available to any program unit

which accesses them by means of a USE statement. This statement has the form

USE module_name

where module_name is the name of the module in which the declarations of the
mentioned constants and variables as well as any derived type definitions are
placed. The USE statement is typed immediately after the initial statement (PROGRAM,

SUBROUTINE, FUNCTION, or MODULE), before the IMPLICIT NONE statement.

Example 7.7:

Consider the module named global items given below. This module contains the
definitions of two named constants (pi and pi_half) and type declarations for three real
variables (x, y, z). These constants and variables will be accessible from within any program
unit that USES global items.

MODULE global items
IMPLICIT NONE

SAVE
REAL, PARAMETER :: pi=3.14159, pi half=pi/2
REAT, :: X, Y, Z

END MODULE glocbal items

247

Note the sAVE statement that follows the TMPLICIT NONE statement. You should place a
SAVE statement in any module that declares variables to make sure that the values of these
variables do not become undefined upon return from a procedure that Usgs that module.

The main program module demo given below calls subl, which in turn calls sub2.
Note that the main program does not UsE the module, as it does not need access to any of
the constants and variables declared in the module. As an exercise, rewrite the program
below using a common block instead of a module. Can the subroutines share the parameters
piand pi_ half without using a module?

PROGRAM module_demo
CALL subl
END PROGRAM module_ demo

SUBROUTINE subl
USE global items
- IMPLICIT NONE

x = pi Ix and pi accessed from module

y = pi_half !y and pi half accessed from module
PRINT*, x !prints 3.141590

PRINT*, vy 'prints 1.570785

CALL sub2 !x now has the value 6.283180
PRINT*, = lprints 6.283180

END SUBROUTINE

SUBROUTINE sub2

USE global items

IMPLICIT NONE

X = pl + 2*pi_half !all accessed from module
END SUBROUTINE

The use of modules can significantly simplify the interface of procedures by
eliminating long argument lists: When dealing with large programs, it often happens
that several procedures need to have access to the same constants and variables.
When the number of such constants and variables is small, one could pass them as
arguments from one procedure to the next. When the number of passed entities is
large, however, the resulting long argument lists become awkward. In FORTRAN 77,
one would normally employ common blocks to simplify the interfaces of the
procedures in question. In Fortran 90, modules provide a more flexible and less
error-prone altemative way to accomplish this simplification. Remember, for
example, that parameters cannot be placed in common blocks. Furthermore, as will
be elaborated on in the next section, the definition of a derived type cannot be
passed as an argument or by means of a common block. Such a type definition can

be shared and accessed by different program units only by means of a module.

248

7.8 Modules and Derived Data Types

All entities (e.g. named constants, variables, arrays, derived type definitions) within a
program unit are local to that unit (i.e. they cannot be accessed by other program
units) unless they are either passed as arguments or shared by means of common
blocks or modules. As noted before, a parameter cannot be placed in a common
block. Moreover, the definition of a derived data type cannot be passed either as an
argument or by means of a common block. The only method to have different
program units share the definition of a derived data type is to place that definition in
a module. Any program unit that USEs that module can then declare and use
variables of that derived data type.

It should be added that repeating the definition of a derived type (using the
same name and identical components) within all the program units in question will
result in a different data type in each program unit, each one being local to the
~ program unit in which it is defined. Local variables of each such type can then be
declared and used within each program unit; but it will not be possible to pass
constants and variables of these types as arguments between these program units.
How a module can be employed to share the definition of a derived data type is

illustrated in the following examples.

Example 7.8:

A straight line is represented by an equation of the form ax+by+c=0. Given two distinct points
(x4,y1) and (x2,y-) through which the line passes, the coefficients can be calculated as follows:
a=y,-y;, b=x4-Xs, and C=y;xo-y,x. Given below is a main program that determines the
equation of a line passing through two points specified by the user.

MODULE geometric types
IMPLICIT NONE
TYPE point

REAL :: X,V
END TYPE point
TYPE line

REAL :: a,b,c

END TYPE line
END MODULE geometric types

249

PROGRAM equation_line
USE geometric types
IMPLICIT NONE
! Variable declarations
TYPE{point) :: pl,p2
TYPE{line) :: pl to p2
! Read input data
PRINT*, 'Enter X,y coordinates of first point: '
READ*, pl
PRINT*, 'Enter x,y coordinates of second point: !
READ*, p2
! Calculate the equation of the line
pl_to p2%a = p2%y - pley
pl to p2%b pl%x - p2%x
pl to_pZ2%c = pl%y * p2%x - p2%y*pl%x
! Report results
PRINT*, 'The coefficients of line ax + by + ¢ = 0!
PRINT*, 'passing through these two points are:'
PRINT*, 'a =', pl to p2%a
PRINT*, 'b =', pl to p2%b
PRINT*, 'c =', pl to_p2%c

END PROGRAM equation line

il

Note that, in this particular example, the type definitions for peint and line could be placed
directly in the main program, i.e. the problem could be solved without using a module. The
purpose here was to illustrate how a derived data type definition is accessed from a module.

Example 7.9:

We next look at a program that calculates “tomorrow's date” for a given “today’s date.” This
program is an improved and generalized version of the program of Example 7.2. The derived
data type date is defined in MODULE date structure. The main program and the three
functions given below USE this module to access the definition of date.

MODULE date_structure
IMPLICIT NONE
TYPE date
INTEGER month
INTEGER day
INTEGER year
END TYPE date
END MODULE date_structure

The main program reads the current date, invokes the function date_ update to determine
tomorrow’s date, and then prints tomorrow's date. Note that the value returned by
date_update is of the derived data type date.

PROGRAM tomorrows date

USE date structure

IMPLICIT NONE

TYPE (date):: today, tomorrow

TYPE {date), EXTERNAL :: date update

PRINT*, "Type today's date (dd mm yyyy): "

READ*, today%day, today%month, today%year

tomorrow = date update(today)

PRINT '(1X,A,I3,".",I2,".",I4)}, "Tomorrow's date is", &

tomorrow%day, tomorrowimonth, tomorrow$%year

END PROGRAM tomorrows date

250

The external function date_update considers three possibilities: (i) today is not the last day
of a month, (ii) today is the last day of December (12" month), (iii) today is the last day of a
month but not the last day of the year. Note the use of the integer function number of days
that returns the number of days in the given month. See the definition of the function
number of days given below. Note that the possibility of a leap year has to be considered.
To that end the function LEAPYR of Example 2.4 is rewritten here in the Fortran 90 style.

FUNCTION date_update (today)

USE date structure

IMPLICIT NONE

TYPE (date) :: date_update

TYPE (date) :: today, tomorrow

INTEGER, EXTERNAL :: number of days

IF (today%day /= number of days(today))THEN
tomorrowtday = today%day + 1
tomorrowdmonth = today%month
tomorrow$year = today%year

ELSE IF{today%month == 12)THEN ! End of year
tomorrow$day = 1
tomorrowdmonth = 1
tomorrowdyear = today%year + 1

ELSE ! End of month
tomorrowdday = 1
tomorrowdmonth = today%month + 1
tomorrow3year = todav%year

ENDIF

date update = tomorrow
END FUNCTION date update

INTEGER FUNCTION number_of_days(d)
USE date structure
IMPLICIT NONE

TYPE(date) :: d
LOGICAL, EXTERNAL :: is leap year
INTEGER, DIMENSION{(12) :: &

days_per month = (/31,28,31,30,31,30,31,31,30,31,30,31/)
IF{is_leap year(d) .AND. d.month == 2}THEN
number of days = 29
ELSE
number of days = days per month(d.month)
ENDIF
END FUNCTION number of days

LOGICAL FUNCTION is_ leap year(d)
USE date_structure
IMPLICIT NONE

TYPE (date) :: d
IF((MOD{d.year,4) == 0 .AND. MOD{d.year,100) /= 0) .OR. &
MOD{d.year,400) == 0)THEN
is_leap_ year = .TRUE.
ELSE
is leap year = .FALSE.
ENDIF

END FUNCTION is_leap_year

251

7.9 Explicit Procedure Interfaces

The interface of a procedure consists of the following: The name of the procedure,
whether it is a function or subroutine, the number of arguments, the name and
characteristics of each of its dummy arguments, and, in the case of a function, the
characteristics of the result variable. Thus, the number, types and intents of the
arguments aré part of the interface of a procedure. The interface of a procedure
determines the forms of reference through which it may be invoked.

In FORTRAN 77 (and earlier versions of FORTRAN), a reference to a
function or call to a subroutine is made without the calling program unit knowing
anything about the procedure. In this situation, the called procedure is said to have
an implicit interface in the calling program unit. This means that information
necessary for checking that the actual arguments and the corresponding dummy
arguments match (in type, in intent, etc.) is not available during the compilation of the
calling program unit. With implicit interfaces the compiler in effect assumes that the
programmer has specified a valid procedure call and has correctly matched actual
argument and dummy argument data types, etc. Consequently, many programming
errors in procedure calls may not be detected during compilation; such errors may
manifest themselves in unpredictable ways during execution.

A procedure interface is said to be explicit if the interface information is
known at the point of call and does not have to be assumed. In this case, the
compiler can check and guarantee the validity of a procedure call, thus providing
much greater security at compile time. For certain features (such as the INTENT
attribute of dummy arguments) provided in Fortran 90 for security and other
purposes to operate properly, a procedure should have an explicit interface in any
program unit that calls or references it. Furthermore, some of the new features of '
Fortran 90 (e.g. assumed-shape arrays, generic procedures, etc.) can only work if
procedure interfaces are made explicit.

There are several ways to make the interface of a procedure explicit in a
calling program unit. These can be summarized as follows:

1. The entire procedure can be placed in a module. The CONTAINS statement is
utilized to do this. The interface of the procedure will then be explicit in any
program unit that USEs that module.

2. The interfaces of all the procedures defined within a single module are explicit to

each other.

252

3. Sometimes it is not possible or convenient to place a procedure in a module. In
such a case, an interface block can be placed in the calling program unit to
make the procedure’s interface explicit in that program unit.

4. An interface block of a procedure can also be placed in a module; the definition
of the procedure being placed elsewhere. The interface of the procedure will be
explicit in any program unit that Usts that module.

As regards to the first approach, it should be added that the definitions of
several procedures can be placed within a single module. The CONTAINS statement
is placed before the definition of the first procedure within the module. Note that a
procedure in a module is a program unit nested within another program unit; the
CONTAINS statement is required to do this.

The last two approaches listed above employ the INTERFACE statement. An
interface block for a procedure is specified by duplicating the heading information of

that procedure, and takes the following general form:

INTERFACE
Interface body 1
Interface body 2

END INTERFACE

Each inferface_body consists of the initial FUNCTION or SUBROUTINE statement of
the corresponding procedure, followed by type declarations for the dummy
arguments, and the final END statement. The best way to generate an interface block
is to copy and paste the relevant lines of code directly from the definition of the

procedure itself into the interface block; this will ensure that they are identical.

Example 7.8:

Consider the following program. Note that the comment in the subroutine indicates that the
caicuiation to be carried out is arg3 = argl*arg2, whereas this statement has been typed
as argl = arg2*arg3 (presumably by mistake). Let us first assume that the comment is

correct and the statement is wrong.

PROGRAM intent_ demo
IMPLICIT NONE
INTEGER, PARAMETER :: a=2
INTEGER :: b=3, c=4, d
CALL sub{a,b,c)
CALL sub(b,c,d)
PRINT*, 'a=', a, ' b=', b
END PROGRAM intent_demo

253

SUBROUTINE sub{argl, arg2, arg3)
'Subroutine calculates arg3
'using arg3 = argl*arg2
IMPLICIT NONE
INTEGER argl, arg2, arg3
argl = arg2*arg3

END SUBROUTINE sub

Using Microsoft Fortran PowerStation Version 4.0, this program compiles and runs without
any error messages. The output is

a = 2 b =20

Note, however, that there are two errors in the program: In the first subroutine call, the
parameter (named constant) a has been used as the first actual argument. This is a
programming error that resuits in an attempt to modify the named constant a. Unfortunately,
some Fortran systems may not detect such an error. On some processors, a reference to the
literal constant 2 or the named constant a later in the program may result in the value 12
being used (although this did not happen with the Microsoft compiler).

The second programming error is the use of the variable d as an actual argument in
the second subroutine call. A value has not been assigned to d (i.e. d is undefined) at this
point and therefore it should not be used in a value demanding context. Many Fortran systems
will detect such an error, but some (e.g. the MS PowerStation system) will not.

Next, consider the use of the INTENT atiribute as follows:

SUBROUTINE sub{argl, arg2, arg3)
!'Subroutine calculates arg3
!lusing arg3 = argl*arg2
IMPLICIT NONE
INTEGER, INTENT (OUT) :: arg3
INTEGER, INTENT(IN} :: argl, arg2
argl = arg2*arg3

END SUBROUTINE sub

When this version of the program is compiled, an error message is displayed at
compile-time indicating that there is an attempt to set the value of the INTENT (IN) dummy
argument argl. Thus, we see that the INTENT aftribute helps detect such a local error. But,
assume now that the comment is wrong and the calculation argl = arg2*arg3 is indeed
the intended one. The INTENT attribute of the arguments will then be specified as follows:

SUBROUTINE sub({argl, arg2, arg3)
IMPLICIT NONE
INTEGER, INTENT (OUT) :: argl
INTEGER, INTENT(IN) :: arg2, arg3
argl = arg2*arg3

END SUBROUTINE sub

Again, the two errors in the calling program go undetected. This is because the
subroutine has an implicit interface in the calling program, i.e. the calling program (in this
case, the main program) does not know anything about the subroutine other than its name.
Specifically, the types of the arguments and the intent of each argument are not known within
the calling program; as a result, the compiler cannot check if the actual arguments match the
dummy arguments in type and in intent. The interface of the subroutine can be made explicit
by first placing the subroutine in a module,

254

MODULE module_sub
CONTAINS
SUBRCUTINE sub(argl, arg2, arg3)
IMPLICIT NONE
INTEGER, INTENT (OUT) :: argl
INTEGER, INTENT(IN) :: arg2, arg3
argl = arg2*arg3
END SUBROUTINE sub
END MODULE module_sub

and adding the statement USE module_ sub just before the rmMpLICIT NoNE statement in the
main program. An alternative approach is to place an interface block after the IMpLICIT
NONE statement within the main program:

PROGRAM intent demo
IMPLICIT NONE

INTERFACE
SUBROUTINE sub(argl, arg2, arg3)
INTEGER, INTENT(OUT) :: argl
INTEGER, INTENT(IN) :: arg2, arg3

END SUBROUTINE sub

END INTERFACE

INTEGER, PARAMETER :: a=2

INTEGER :: b=3, c=4, d

CALL sub{a,b,c)

CALL sub(b,c,d)

PRINT*, 'a=', a, ' b=', b
END PROGRAM intent demo

Still another alternative is to place the interface block in a module and to USE that
module within the calling program unit:

MODULE sub_interface
INTERFACE
SUBROUTINE sub(argl, arg2, arg3)
INTEGER, INTENT{OUT) ::argl
INTEGER, INTENT(IN) :: arg2, arg3
END SUBROUTINE sub
END INTERFACE
END MODULE sub_interface

PROGRAM intent_demo
USE sub_interface
IMPLICIT NONE
INTEGER, PARAMETER :: a=2
INTEGER :: b=3, c=4, d
CALL sub{a,b,c)
CALL sub(b,c,d)}
PRINT*, 'a=', a, ' b=', b
END PROGRAM intent demo

Note that with the two approaches that utilize an interface block, a separate definition
of the procedure exists somewhere (either in the same source file as the main program, or in
a separate file). When the entire definition of the procedure is placed within a module using
the CONTAINS statement, however, a separate interface block is not required. All that is
required is then to USE that module within the calling program unit.

255

7.10 Writing Generic Subprograms

Many of the intrinsic functions of Fortran can have arguments of more than one type.
For such functions, the type of the result will usually (though not always) be of the
same type as the arguments. Thus, if X and I are two variables of type real and
integer, respectively, ABs(x) will produce a real value, whereas ABS(I) will
produce an integer.

Functions with this property are called generic functions (cf. Chapter 1). This
is because the name of such a function really refers to a group of functions, the
appropriate one being selected by the compiler depending on the types of the actual
arguments. Remember that you may refer directly to the actual function instead of

using its generic name, e.g. you can write IABS (I) instead of ABS (I).

Example 7.11:

Consider Example 2.3: Note that FUNCTTON ISIGN2 given in that example works for integer
arguments only. The following program shows how a single generic name (sgn) can be used
to refer to a group of external functions. Note that the generic name sgn can be used with
either integer or real arguments. As an exercise, add code so that double precision arguments
can also be handled. Make sure to test the resulting program.

MODULE sign functions
IMPLICIT NONE
INTERFACE sgn
MODULE PROCEDURE int sgn
MODULE PROCEDURE real_ sgn
END INTERFACE
CONTAINS
INTEGER FUNCTION int sgn{a, b)
IMPLICIT NONE
INTEGER, INTENT(IN) :: a, b
IF{b < 0) int_sgn = -ABS(a)
IF(b == 0) int sgn 0
IF(b > 0) int sgn = ABS (a)
END FUNCTION int sgn
REAL FUNCTION real sgn(a, b)
IMPLICIT NONE

REAL, INTENT(IN) :: a, b
IF(b < 0) real sgn = -ABS (a)
IF(b == 0) real sgn = 0

IF{(b > 0) real sgn = ABS (a)
END FUNCTION real_ sgn
END MODULE sign functions

256

PROGRAM test generic_sgn
tDriver routine to demonstrate the use of
tuser defined generic function sgn
USE sign functions
IMPLICIT NONE
REAL :: %, Y
INTEGER :: m, n
PRINT*, 'Enter two real numbers x, y '
READ*, %, ¥y
PRINT*, 'sgnix,y) is', sgni{(x,y)
PRINT*, 'Enter two integers m, n :'
READ*, m, n
PRINT*, 'sgn(m,n) is', sgn{m,n)

END PROGRAM test generic sgn

7.11 Guide to Further Study

As noted in the Preface, some of the important new features of Fortran 90 had to be
left out in this edition of the book. Most notable among these are (i) new library
functions, (i) new array processing capabilities and dynamic memory allocation, (jii)
pointers and dynamic data structures, (iv) parameterized data types, kind type
parameters, and the functions SELECTED_INT KIND and SELECTED_REAL KIND,
(v) recursive procedures, and (vi) the CYCLE statement. These and other new
features of the language will have to be included in the next edition of the book.

For further self-study, | recommend the books by Ellis et al. (1994) and
Chapman (1998). You can also find a lot of information, including some free tutorials
and books, on the World Wide Web. Start your search with the following:

www.uni-comp.com/fortran

www.uni-comp.com/fortran/FAQ/cont.htmi/

257

REFERENCES

[11Adams, J.C. et al., Fortran 95 Handbook: Complete ISO/ANSI Reference, The
MIT Press, Cambridge, Massachusetts, 1997.

[2]Borse, G.J., FORTRAN 77 and Numerical Methods for Engineers, Second Edition,
PWS-KENT Publishing Company, Boston, Massachusetts, 1991.

[81Chapman, S.J., Fortran 90/95 for Scientists and Engineers, WCB/McGraw-Hill,
Boston, Massachusetts, 1998.

[4]Covington, M. and Downing, D., Dictionary of Computer Terms, Barron's
Educational Series, New York, 1989.

[5]Ellis, T.M.R. and Philips, I.R., Programming in F, Addison-Wesley Publishing
Company, Harlow, England, 1998.

[6]Ellis, T.M.R., Philips, LR., and Lahey, T.M., Fortran 90 Programming, Addison-
Wesley Publishing Company, Reading, Massachusetts, 1994.

[7]1Etter, D.M., Structured FORTRAN 77 for Engineers and Scientists, Fourth Edition,
The Benjamin/Cummings Publishing Company, Redwood City, California, 1993.
[8] Friedman, F.L. and Koffman, E.B., Problem Solving and Structured Programming
in FORTRAN, Second Edition, Addison-Wesley Publishing Company, Reading,

Massachusetts, 1981.
[9] Friedman, F.L. and Koffman, E.B., FORTRAN with Engineering Applications, Fifth
Edition, Addison-Wesley Publishing Company, Reading, Massachusetts, 1993.
[10]Kochan, S.G. Programming in C, Revised Edition, Hayden Books, Indiana,
1990.

[111Kruger, A., Efficient FORTRAN Programming, John Wiley & Sons, New York,
1990.

[12]Lipschutz, S. and Poe, A., Programming with FORTRAN, Schaum's Outline
Series, McGraw-Hill Book Company, New York, 1978.

[13]Microsoft Corporation, Microsoft FORTRAN Reference (Development System
Version 5.1), U.S.A., 1993.

[14]Organick, E.l. and Meissner, L.P., FORTRAN |V, Addison-Wesley Publishing
Company, Reading, Massachusetts, 1974.

258

[15]Press, H.W., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical
Recipes: The Art of Scientific Computing (Original FORTRAN 77 and Pascal
version), Cambridge University Press, Cambridge, 1986.

[16]Press, H.W., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical
Recipes in FORTRAN 77: The Art of Scientific Computing (Volume 1 of Fortran
Numerical Recipes), Second Ed., Cambridge University Press, Cambridge, 1999.

[17]Press, H.W., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical
Recipes in Fortran 90: The Art of Parallel Scientific Computing (Volume 2 of
Fortran Numerical Recipes), Cambridge University Press, Cambridge, 1996.

[18]Ralston, A. and Reilly, E.D.Jr. (Editors), Encyclopedia of Computer Science and
Engineering, Second Edition, Van Nostrand Reinhold Company, New York, 1983.

[19]Smith, |.M. Programming in Fortran 90, John Wiley & Sons, West Sussex, 1995.

[20]Spiegel, M.R., Mathematical Handbook of Formulas and Tables, Schaum's
Outline Series, McGraw-Hill Book Company, New York, 1968.

