PROGRAMMING IN

FORTRAN

Fourth Edition

Omer Akgiray

PERMISSION TO COPY AND DISTRIBUTE:

This book may be copied and distributed in digital or printed form
provided that the front cover that contains the name of the author
and the title of the book is included with each copy. Individual
chapters may be copied and printed in the same way.

e-mail:

omer.akgiray@marmara.edu.tr

197

CHAPTER 6: FILES AND MORE ON FORMATS

6.1 Records and Files

Occasionally it may be desirable to read input data from an input data file, or to write
output data into an output file. Using an input data file, for example, frees the
programmer from having to continually re-enter the same data while testing and
debugging a program. Using an output file enables the programmer save the results
of a program execution. Such an output file may later be displayed on the screen,
printed on paper, or used as input to another program.

Before discussing the details of file input/output, it may be useful here to
briefly describe certain terms related to files in FORTRAN. A record is a defined
sequence of characters or values. There are three types of records in FORTRAN:
formatted records, unformatted records, and end-of-file records. These terms will
be explained subsequently. A sequence of records forms a file, of which there are
two types: external and intemal. An external file is a file stored on some external
medium (e.g. a hard disk). An internal file is a character variable, a character array
element, a character substring, or a character array that is processed as if it were an
external file by using the READ and WRITE statements. Thus, an internal file is not
actually a file but is treated as one. Internal files will be discussed in Section 6.11.

A file may consist of formatted records and, optionally, one end-of-file record,
or it may consist of unformatted records and, optionally, one end-of-file record. In the
first case, the file is referred to as a formatted file; in the latter case it is an
unformatted file. A file cannot contain both formatted and unformatted records.

External files can be further classified as sequential files and direct access
files. A sequential file consists of records that must be processed sequentially,
starting with the first one. Each record is written after the previously written record,
and records are read in the same order as they were written. The records of a direct
access file, on the other hand, can be written and read in any order. Direct file

access is also referred to as random access.

6.2 Connecting External Files: The OPEN Statement

Prior to writing into or reading from an exfernal file, the file must first be connected to

the program by an OPEN statement, which has the general form

198

OPEN (UNIT = unit_num,

FILE = file_name,

STATUS = file_stat,

ACCESS = access_{ype,

FORM = format_mode,

RECL = record_length,

TOSTAT = jo_status,

BLANK = blank_mode,

ERR = err_label)
The file specifiers UNIT, FILE, STATUS, etc. describe the properties of the file
being connected. The UNIT specifier must always be present (aithough the keyword
UNIT may be omitted: see below), while all the other specifiers are optional.

unit_num is an integer expression with a non-negative value less than 100.
The value of unit_num is used in all I/O (READ or WRITE) statements which are to
use that file. If the keyword UNIT is omitted, unit_num must be the first parameter.

file_name is a character expression indicating the name of the file.
Acceptable values for file_name are dictated by the operating system being used.
For example, with many versions of MS-DOS, a file can have a root name with at
most 8 characters and an extension containing 3 characters.

The value of file_stat must be one of the strings 'NEW' (for a new output file),
roLD! (for an existing file), *SCRATCH' (for an output file that will not be retained
after the execution of the program is complete), or 'UNKNOWN'. If omitted,
'UNKNOWN ' is assumed. If the STATUS specifier is set equal to ' SCRATCH', the file
should not be given a name. If file_stat is 'oLD' then the file must already exist,
whereas if it is "NEW' it must not already exist. An attempt to open an existing file
with STATUS = 'NEW’', for example, will fail. The interpretation of UNKNOWN status
is compiler-dependent. On most systems, however, a file will be treated as NEW if it
does not exist; it will be treated as oLD if it already exists. Thus the UNKNOWN status
may be used to avoid an execution-time error due to opening an existing file with
STATUS = 'NEW' Or opening a non-existent file with STATUS = 'OLD'.

The value of access_type is either 'SEQUENTIAL' or 'DIRECT'. If
ACCESS specifier is omitted, 'SEQUENTIAL' is assumed.

The value of format_mode is either ' FORMATTED' or 'UNFORMATTED'. If
the FORM specifier is omitted, 'FORMATTED' is assumed for sequential files;

"UNFORMATTED' for direct access files.

199

record_length is an integer expression that specifies the length of each
record in a direct access file. Note that the RECL specifier is used only when
ACCESS = '"DIRECT'.

io_status is an integer variable that is set to zero if no error occurs during the
execution of the OPEN statement; it will be set to a compiler-dependent positive value
to indicate that there was an error during the file connection process. An error may
occur, for example, if the named file does not exist or is of the incorrect type.

The BLANK specifier establishes the interpretation of blanks in numeric fields
for all input statements on that file. blank_mode is a character expression that
evaluates to 'NULL' or 'ZERO'; it is set to 'NULL' to ignore blanks. Set
blank_mode to 'ZERO' to treat blanks as zeros. If omitted, 'NULL' is assumed.
The BLANK specifier is applicable only to formatted input (i.e. only to input files
connected with FORM = 'FORMATTED'). The BLANK specifier establishes the
interpretation of blanks in numeric fields for all input statements on the file being
connected. It is also possible to specify the interpretation of blanks on a record-by-
record basis by employing a BN or Bz edit descriptor.

The ERR specifier causes a transfer of control to the statement labeled
err_label if an error occurs. Since the TOSTAT specifier can be utilized to detect an
error and to take subsequent corrective action, it may not be necessary to use the
ERR specifier. As a matter of fact, to minimize the appearance of labeled statements
in FORTRAN programs, many programmers recommend the use the 10STAT

specifier instead of the ERR specifier to handle errors.

6.3 The READ and WRITE Statements

It may be difficult at this point to completely understand the meaning of some of the
file specifiers described above'. You will need to study the example programs given
later in this chapter to better appreciate the application of the OPEN statement and
the various specifiers. Before presenting complete example programs, however,

general forms of the READ and WRITE statements need to be described:

! Fortran 90 includes two additional file specifiers. These take the forms ACTION = allowed actions
and POSITION = file position. Here allowed actions is a character expression that cvaluates to
'READ', '"WRITE', or 'READWRITE', whereas file posifion is a character expression that must
take one of the values ' REWIND', 'APPEND', or 'ASIS"'.

200

READ (UNIT = unit_spec,
FMT = fmt_spec,
END = end label,
ERR = err_label,
IOSTAT = io_status,
REC = rec_number) input_list

WRITE (UNIT = unif_spec,

EMT = fmt_spec,

ERR = err_label,

IOSTAT = jo_status,

REC = rec_number) output_list
where unit_spec specifies the file on which the READ or the WRITE operation is
performed; the parameter unit_spec is usually a unit number (a non-negative
integer); it may also be the name of an internal file. If the keyword UNIT is omitted,
unit_spec must be the first parameter.

fmt_spec is the label of the FORMAT statement to be used in reading or
writing, or the format specification itself. An asterisk (*) used as fmt_spec indicates
list-directed input/output. Note that the FMT specifier is used with formatted files only.
If the keyword FMT is omitted when reading from or writing to a formatted file,
FORTRAN assumes that the second parameter is fmt_spec. Otherwise, all the
parameters can be typed in any order. For clarity, however, it is recommended that
you always include the keywords UNIT and FMT.

The optional parameter jo_status is an integer variable. After the READ or
WRITE statement is executed, the value of io_sfatus will be set to zero to indicate
that no errors occurred. It will be set equal to a compiler-dependent positive value to
indicate that there was an error during input/output. When reading a file, io_status
will be set to a compiler-dependent negative value if an end-of-file record is
encountered.

The ERR specifier causes a transfer of control to the statement labeled
err_label if an error occurs during reading or writing. The END specifier is similar, but
can be used only with a READ statement. It causes a transfer of control to the
statement labeled end_label if an end-of-file record is encountered when reading a
file. This specifier can be used only with sequential files. Note that the TOSTAT
specifier can be used instead of the ERR and END specifiers: jo_status will be
negative when an end-of-file record is encountered; it will be positive if an error

occurs during input/output.

201

The REC specifier is used only when reading or writing to a direct access file.
rec_number is an integer expression with a positive value which specifies the record
number of the record to be read or written.

An asterisk, *, when used as unit_;spec in a READ statement, designates the
default input unit. An asterisk used as unit_spec in a WRITE statement, on the other
hand, designates the default output unit. In most computer systems, such as
personal computers and workstations, the mentioned default units will be the
keyboard and the display screen, respectively. Furthermore, the default input unit is
usually preconnected as unit 5, whereas the default output unit is unit 6°. Note that
the default units will always be preconnected to a program, and there is no need to
connect them by means of an OPEN statement. With most FORTRAN systems, an
OPEN statement can be employed to connect a file with units 5 or 6. Once this is
done, the relevant unit number will refer to the file in question (and, not to the default
/O unit) in that program. The asterisk (*), however, is permanently connected to the
default /O units, and an OPEN statement cannot change this.

It should be noted that the PRINT statement always sends it output to the
default output unit. The WRITE statement is more flexible in that it can be used to
print to other units (i.e. to internal and external files).

it follows from the information given so far that all of the statements

WRITE (*, *) output list
WRITE (UNIT=*, FMT=*) oufput list

WRITE (6, *) output list
WRITE (UNIT=6, FMT=*) output list

are equivalent to

PRINT*, output list

Similarly, the input statements

READ (*, *) input list
READ (UNIT=*, FMT=*) input list
READ (5, *) input list
READ (UNIT=5, FMT=*) input list

are equivalent to

READ*, input list

% This is compiler-dependent. On some FORTRAN systems, the default input and output units may be
pre-connected with unit numbers 1 and 2, respectively. Unit number 0 may also be used for the default
input unit. You can experiment with your system to find out about the default unit numbers.

202

The statement

WRITE (*, 11) outputlist
indicates that the output will be displayed on the defaulit output unit using the format
specified by the FORMAT statement labeled 11. As such it is equivalent to

PRINT 11, output list
which also prints output list on the default output unit. These last two statements are
used for user-formatted output. User-formatted input (i.e. input editing) is also
possible, and it will be described later in this chapter.

To read a line of data from a file with the unit number 15, one of the following

statements could be used:

READ (15, *) input list
READ (UNIT=15, FMT=*) input list

To write a line of data into unit number 7 using the FORMAT statement labeled

23, one of the following iwo statements may be used:

WRITE (7, 23) outputlist
WRITE (UNIT=7, FMT=23) oulput list

6.4 The END FILE, BACKSPACE, and REWIND Statements

After the WRITE operation on a sequential file is completed, the END FILE
statement should be used to mark the end of the file by writing a special end-of-file

record at the end of the file. This statement has the following general form:

END FILE (UNIT=unit_spec, ERR=err_label, I0STAT=i0o_status)

where the UNIT, ERR, and IOSTAT specifiers are the same as those already
described for use with the WRITE statement. For example, if the keyword UNIT is
omitted, unit_spec must be the first parameter. The parameters can otherwise be
typed in any order. The ERR and IOSTAT specifiers are optional. No data may be
written following the end-of-file record.

When an end-of-file record is read by a READ statement, it will cause an end-
of-file condition which can be detected by an T0STAT or an END specifier in the
READ statement. If not detected in this way an execution-time error may occur.

It was noted earlier that the records of a sequential file must always be
processed serially. Consider, for example, the problem of writing additional records
to the end of an existing sequential file (without deleting the existing records). The
file is first connected to the program by an OPEN statement. When the file is opened,

it will normally be positioned just before the first record in the file.(To ensure this the

203

REWIND statement may be used. See below.) A WRITE statement executed at this
point will, therefore, overwrite the existing first record. A very important rule to
remember is that writing a record to a sequential file destroys all information in the
file after that record. (If it is required to overwrite individual records selectively within
a file then the file must be opened for direct access.) To avoid overwriting and
destroying the existing records, therefore, a sequential file must first be positioned
just before the end-of-file record (and after all the data records). This can be
accomplished by reading all the existing records in the file before writing new
records. The first READ statement will read the very first record. The file is then
positioned just before the second record, and thus the next READ statement will read
the second record. As additional READ statements are executed, the file position
pointer moves sequentially towards the end of the file, the final record that can be
read being the end-of-file record. Recall that it is possible to detect the end-of-file
record by means of a END or TOSTAT specifier used in a READ statement. Once the
end-of-file record is read, the file will be positioned immediately after the end-of-file
record. Since it is not possible to read or write beyond the end-of-file record, the file
should be repositioned just before the end-of-file record before writing new records.
This can be accomplished by using the BACKSPACE statement which has the

following general form:

BACKSPACE (UNIT = unit_spec, ERR = er_label, TOSTAT = jo_status)

In general, this statement causes the file to be positioned just before the preceding
record. If the file position pointer is past the end-of-file record, it is repositioned just
before the end-of-file record. The BACSPACE statement thus enables the program to
read or overwrite the previous record. Here the UNIT, IOSTAT, and ERR specifiers
are the same as those already described for uée with the WRITE statement. The ERR
and IOSTAT specifiers are optional.

The other file-positioning statement is the REWIND statement, which causes
a file to be positioned just before its first record. A subsequent READ statement will

start reading the file from the beginning. The generai form is as follows:

REWIND (UNIT = unit_spec, ERR = err_label, TOSTAT = io_status)

Here again the ERR and TOSTAT specifiers are optional. It should be remembered

that if a program has either read or written the end-of-file record in a sequential file, it

204

cannot read or write any more records until either a BACKSPACE Or @ REWIND

statement has repositioned the file to a point before the end-of-file record.

6.5 The cLOSE Statement

Once the READ or WRITE operation on an external file is completed, the file should

be disconnected from the program using the cLOSE statement:

CLOSE (UNIT = uhil_spec,

ERR = err_label,

IOSTAT = jo_status,

STATUS = file_status)
where the UNIT, IOSTAT, and ERR specifiers take their usual form. The ERR,
T0STAT, and STATUS specifiers are optional. The STATUS specifier can be used to
specify what will happen to the file after it is closed: file_status is a character
expression which is either "KEEP' or 'DELETE'. if omitted, 'DELETE' is assumed
for scratch files, 'KEEP' is default for all other files. Setting STATUS="'KEEP' for a

scratch file is not permitted.

6.6 Sequential and Formatted External Files: Examples

The INQUIRE, OPEN, REWIND, BACKSPACE, END FILE, and CLOSE statements are
executable statements, and as such they are placed within other executable
statements of a program. Several examples illustrating the use of these statements
in association with sequential and formatted files are presented in this section. it is
recommended that you read the previous sections of this chapter again after you
study these example programs.

Example 6.1:

Consider the calculation of the sum 7+2+...+ = i(i+1)/2. The following program reads in the
largest integer N for which this sum will be calculated. The program then calculates the sum
for all values of i between 1 and N. The results are written into an output file named
SUMS . OUT. Note the application of the OPEN, READ, WRITE, END FILE, REWIND, and CLOSE
statements in this program.

PROGRAM SUMN
C******************************‘k***
(o] Prints I and the sum 1+2+...+I for all I less than or equal to
C a user-entered integer N into an output file named by the user.
c************‘k******************‘k**a\-‘k~k*************************************

IMPLICIT NONE

INTEGER N, I, ISUM, IOS

205

C Prompt the user, read input
PRINT*, 'Program to calculate 1+2+...+I for all I .LE. N.'
PRINT*, 'Enter upper limit N (a positive integer): ’

READ*, N
c Open output file
OPEN (UNIT = 1, FILE = 'SUMS.OUT', FORM = 'FORMATTED',
* ACCESS = 'SEQUENTIAL', STATUS = 'NEW', IOSTAT = 105)

IF(IOS.NE.O)THEN
PRINT*, 'An error occurred while opening output file.'
PRINT*, 'Execution will have to be terminated.’
STQP
ENDIF
C Write sums 1+2+...+I for all I .LE. N into output file
DO 1 I=1, N
WRITE(UNIT = 1, FMT = 10, IOSTAT = IOQS) I, I*(1I+1)/2
10 FORMAT (215)
IF(IOS.NE.QO) PRINT*, 'Error when writing line I =', I
1 CONTINUE
END FILE (UNIT = 1)
PRINT*, 'Summation calculation and output generation completed.’
C Echo print the contents of the output file on the screen
REWIND (UNIT = 1)
PRINT*, 'SUMS.OUT contains the following:'
DO WHILE (.TRUE.)
READ (UNIT = 1, FMT = *, END = 2, IOSTAT = I0S) I, IsUM

IF(IO0S.GT.D) PRINT*, 'Error when reading line I =', I
IF(I0S.EQ.0) PRINT 10, I, ISUM
END DO -
2 CLOSE(UNIT = 1)

END

Notice the specifiers used in the OPEN statement. Recall that the RECL specifier is
relevant only for direct access files. Since the output file is a sequential access file in this
case, the RECL specifier is omitted. The BLANK specifier is omitted because it is applicable to
user-formatted input only.

Note that the ERR specifier is omitted as well. Instead of using the ERR specifier, the
10STAT specifier and the integer variable 10s are employed by this program for error
detection. If an error occurs when executing the OPEN statement, T0s will be assigned a non-
zero value. A program can detect an error during file connection and take appropriate action
by utilizing the TOSTAT specifier as illustrated here. The TOSTAT specifier can be used in a
similar manner with the READ, WRITE, END FILE, CLOSE, REWIND, BACKSPACE, and
INQUIRE statements.

An error may occur during the execution of an OPEN statement, for example, if a file
named SUMS.oUT already exists in the working directory as this would contradict the
specification STATUS = 'NEW' (you can observe this by running the above program twice).
The INQUIRE statement can be used to check whether or not a file with the specified name
exists (see Example 6.4). An alternative that works on most compilers is to set STATUS =
"UNKNOWN' (see Exercise 7 later in this chapter).

The ACCESS specifier can actually be omitted in this example since ' SEQUENTIAL'
is assumed by default. The FORM specifier could also be omitted here because 'FORMATTED'
is the default for sequential files. For clarity, however, it is good practice to explicitly specify
the properties of a file by including all the applicable specifiers in the OPEN statement.

Consider next the WRITE statement. There are five possible specifiers that can be
used in a WRITE statement. Of these, the REC (record number) specifier is relevant only for
direct access files, and is therefore omitted in the above program. The ERR specifier is
omitted because the TOSTAT specifier is used for error detection.

The ERR and IOSTAT specifiers are omitted in the ENDFILE, REWIND, and CLOSE
statements in the above program. This is done here for simplicity. As an exercise, modify the
program by adding the T0sSTAT specifier to the mentioned statements.

206

Example 6.2:

Consider again the linear-curve fit problem (see Example 3.5). PROGRAM LSQUAR of Chapter
3 is rewritten here as a subroutine. Note that the subroutine takes input data as arguments,
carries out the required calculations, and returns the results via output arguments. That is, no
input or cutput operations are performed within the subroutine. As a result, this same
subroutine can be used regardless of how the input data are read.

SUBROUTINE LSQUAR(X, Y, N, M, B)

C**

C Subroutine finds the equation of the least squares line
C for a set of data points. Variables used are:

cC X, Y : (X(1),Y¥(1i)) is an observed data point (i=1,...,N)
C N : number of data points

cC M : slope of the line Y =mX + b

C B : Y-intercept of the line ¥ = mX + b

C SUMX : sum of X's

C suMY : sum of Y's

C sUMX2 : sum of the squares of X's

C SUMXY : sum of the products X*Y

C XMEAN : mean of the X's

C YMEAN : mean of the Y's

C**

IMPLICIT NONE
C Dummy arguments

INTEGER N

REAL X(N), Y(N), M, B
C Local wvariables

INTEGER I

REAL SUMX, SUMY, SUMX2, SUMXY, XMEAN, YMEAN
C Initialize the sums to 0

SUMX = 0.
SUMXY = 0
SUMX2 = 0
SUMY = 0.

C Calculate the necessary sums
DO1I=1, N
SUMX = SUMX + X(I)
SUMY = SUMY + Y(I)
SUMXY = SUMXY + X(I)*Y(I)
SUMKX2 = SUMX2 + X{(I)*X(I)
1 CONTINUE
C Calculate slope and intercept
XMEAN = SUMX/N
YMEAN = SUMY/N

M = (SUMXY - SUMX*YMEAN) / (SUMX2Z - SUMX*XMEAN)
B = YMEAN - M*XMEAN

RETURN

END

Suppose that the input data are present in a file named xY. DAT. (Such a file might be
the output of another program, or it could be prepared using a text editor.) We shall assume
that the first line of XY.DAT contains a single value, namely, the number data points (i.e.,
number of X-Y pairs). Each of the second and subsequent lines contains a data point (a pair
of real numbers). An example is provided below:

207

5

-1.0 -1.0
1.0 3.0
2.5 6.0
7.0 15.0
3.0 7.0

PROGRAM LINE given below shows how data can be read from such a file.

PROGRAM LINE
C**k**
c Main program reads input data, calls LSQUAR to find the
c best fitting straight line to the data, prints output.
C'k**'k*‘k‘k****‘k**

IMPLICIT NONE

INTEGER Nmax

PARAMETER (Nmax = 100)

INTEGER I, N, IO5

REAL X (Nmax), Y(Nmax), M, B

OPEN(UNIT = 1, FILE = 'XY.DAT', STATUS = 'OLD', IOSTAT = IOS)

IF(IOS.NE.0} STOP 'Error while connecting input file,'

READ(1, *, IOSTAT = I0S8) N

IF(IOS.NE.Q) STOP 'Error while reading number of data points.'

Do 1 1I=1, N

READ(1, *, IOSTAT = IOS) X(I), ¥Y(I)
IF{I0OS.NE.(0) STOP 'Error while reading X-Y pair.'
1 CONTINUE

CLOSE (UNIT = 1)

CALL LSQUAR(X, Y, N, M, B}

PRINT 5, M, B

5 FORMAT (1X, 'Equation of least squares line is Y = mX + b.',/,
$ 1X, '8lope =m =', F5.2, /, 1X, 'Y-intercept = b =', F5.2)
END

The following is the output of PROGRAM LINE using the input file given above:

Equation of least sguares line is Y = mX + b.
Slope = m = 2.00
Y-intercept = b = 1.00

Note that the keywords UNTT and FMT are omitted in the READ statements. When this
is done, the first and the second parameters must be unit_spec (1 in this example) and
fmt_spec (* in this case), respectively.

Notice also how the TOSTAT specifier is employed for error detection. If a data file
named XY.DAT is not present in the directory you run this program; for example, the value of
105 will be nonzero after the execution of the OPEN statement.

Exercises:

1. When a text editor program is used to generate a data file, an end-of-file record is
automatically inserted by the computer following the last line of data. Utilizing this fact and the
END control specifier, it is possible read such a file without knowing the number of lines in
advance. To demonstrate this, modify PROGRAM LINE by replacing the program section

READ (1, *) N
Dol1I=1,N
READ(1, *) X(I), ¥(I)
1 CONTINUE

208

by the following statements:

DO WHILE({.TRUE.)
READ (1, *, END = 10) X(I), Y(I)
END DO
10 CONTINUE

Delete the first line (which contains the number of data points) from XY.DAT. Compile and run
the program again after these modifications. As an alternative, try also the following version:

DO WHILE(.TRUE.)
READ{1l, *, IOSTAT = I0S) X(I), Y (I}
IF(I0S .LT. 0) GO TO 10
END DO
10 CONTINUE

Here 105 is an integer variable.

2. To obtain a table of the printable ASCII characters, type and run the following program. The
first 32 characters i.e. the characters with decimal codes between 0 and 31 are skipped by the
program. To type the IBM PC character * l’ (within a DOS editor), hold down the ALT key and
then type the number 179 using your numeric keypad. If you view the file from within a
Windows editor, this character will appear as ® (superscript 3). If you are typing the
FORTRAN program using a windows editor, type " (which has the decimal code 179 in the
windows character set: use the ALT+0179 key combination to type if) instead of] {which
has the decimal code 179 in the IBM PC character set). All this assumes that your processor
employs an extension of the ASCII character set (see the Remark following Example 5.2).

PROGRAM ASCII
Gk koo ok ok ok ok e sk R ok R R R ok ok ok ok ok sk R R R R Rk ke Sk ok Sk ok ok ok k ok ok ok e

c Program writes the printable US-ASCII characters to a file
c*******~k~k~k******’k**********‘k**
IMPLICIT NONE
INTEGER I, IOS
OPEN (UNIT = 10, FILE = 'USASCII.CHR', IOSTAT = IOS)
IF(I0S.NE.Q) STOP 'Exrror while opening file.'
DO 100 T = 32, 63
WRITE(10,1) I, CHAR(I), I+32, CHAR(I+32), I+64, CHAR(I+64)
WRITE (10, 2)
100 CONTINUE
CLOSE(UNIT = 10)
1 FORMAT (3(1X, I4, 1X, A, 1%, '|'))
2 FORMAT (3(8X,'|'))
END

You can view the output file USASCII.CHR by either typing “edit ascii.chr’ or “type
ascii.chr’ at the DOS command prompt. The US-ASCIl characters should be displayed
correctly within a Windows editor as well (why?), but the line drawing character ‘|” used to
separate the columns of the resulting table may appear as ' (why?)

Example 6.3:

The following program uses SUBROUTINE CBUBBLE (cf. Chapter 5) for sorting a list of
character strings. To test the program, prepare a file named UNSORTED. Type a word on each
line of the file. The output file SORTED will contain the same words, sorted in ascending order.

209

PROGRAM CORDER
C*********7\-****k***
c Program reads a character array CARR from a file named UNSORTED.

c The elements of CARR are put into alphabetical order by CBUBBLE.
o] The sorted array CARR is written into a file named SORTED.
C******************7\-***

IMPLICIT NONE

INTEGER NMAX, I0S, I, N

PARAMETER (NMAX = 200)

CHARACTER*40 CARR(NMAX), CWORK

CHARACTER*1 CH

OPEN(UNIT = 1, FILE = 'UNSORTED', STATUS = 'QLD',

* ACCESS = 'SEQUENTIAL', FORM = 'FORMATTED', IOSTAT = 10S)

IF(IOS.NE.O) STOP 'Error opening input file.'

DO 1 I =1, NMAX

READ(UNIT = 1, FMT = '(A)', END = 10, IOSTAT = I0S) CARR(I)
IF(I0S.NE.O) STOP 'Error while reading input file.'’
1 CONTINUE
PRINT 100, NMAX, NMAX
100 FORMAT (' Read maximum number (', I4, ') records allowed'/
* ' before reaching end of file. The file may contain’/
' additional records. This may be a partial sort.'/
* ' Type S5 to sort the', I4, ' values read.')
READ (UNIT = *, FMT = '(Al)') CH

IF(CH .NE. 'S' .AND. CH.NE.'s') STOP 'Execution terminated.’

10 CONTINUE
CLOSE (UNIT = 1)

N=1I-1

CALL CBUBBLE (N, CARR, CWORK)

OPEN (UNIT = 2, FILE = 'SORTED', STATUS = 'NEW',

* ACCESS = 'SEQUENTIAL', FORM = 'FORMATTED', IOSTAT = 105}

IF (IOS.NE.0) STOP 'Error opening output file.'
po2I=1, N

WRITE (UNIT = 2, FMT = '{(A)', IOSTAT = I0S) CARR({I)
IF(ICS.NE.Q) STOP 'Error while writing output file.’
2 CONTINUE
ENDFILE (UNIT 2)

CLOSE (UNIT = 2)
END

6.7 The INQUIRE Statement

There are occasions when it is helpful to find out the properties of a file during the
execution of a program. This can be done using the INQUIRE statement. Most
frequently this statement is employed to find out whether or not a file specified by the
user exists. If an attempt is made to open a file that does not exist, an error will
result. (If this error is not detected using either the ERR specifier or the IOSTAT
specifier, execution of the program will terminate prematurely.) To prevent such an
error and to make it possible for the user to re-enter a file name, the INQUIRE

statement can be utilized. Consider, as an example, the following program segment:

210

1 PRINT*, ‘'Enter file name within apostrophes: '
READ*, FNAME
INQUIRE(FILE = FNAME, EXIST = FOUND)
IF{.NOT.FQOUND)THEN
PRINT *, FNAME//' does not exist.'’

GO TO 1
ELSE IF(FOUND)THEN

OPEN (UNIT = 1, FILE = FNAME, STATUS = 'OLD')
ENDIF

Here it is assumed that FOUND has been declared as a logical variable, and FNAME is
a character variable of an appropriate length. After the execution of the INQUIRE
statement, FOUND will have the value .TRUE. if a file with the name specified by the
user (and stored in FNAME) exists; it will be .FALSE. if such a file does not exist.

An INQUIRE statement is either an inquire-by-file or an inquire-by-unit.
Note that the program segment given above employs an inquire-by-file. An inquire-
by-unit statement, on the other hand, includes the UNIT specifier. Exactly one (and
not both) of the UNIT and FILE specifiers must appear in an INQUIRE statement.
An INQUIRE statement may also include an IOSTAT or ERR specifier in the same
form as in an OPEN statement. If the keyword UNIT is omitted, unit_spec must be the
first parameter. Otherwise, the parameters may appear in any order. The most

general form of the INQUIRE statement is as follows:

INQUIRE (UNIT = unit_spec,
FILE = file_name,
EXIST = file_existence,
OPENED = open_status,
NAMED =hame_status,
NAME = fname,
NUMBER = unit_number,
NEXTREC =record_number,
ACCESS = access_type,
SEQUENTIAL = yes or_no,
DIRECT = yes_or_no,
FORM = format_mode,
FORMATTED = yes_or._no,
UNFORMATTED = yes_or_no,
RECL = record_length,
IOSTAT = io_sfatus,
BLANK = blank_mode,
ERR = err_label)

The UNIT, FILE, ERR, and IOSTAT specifiers are used as described before for the
OPEN statement. jo_status, for example, is an integer variable that returns zero if the

INQUIRE statement executes without any error.

211

file_existence, open_status, and name_status are logical variables. The
OPENED, EXIST, and NAMED specifiers can be used in either an inquire-by-unit or
an inquire-by-file, although the NAMED specifier is normally used in an inquire-by-unit
operation only.

After the execution of the INQUIRE statement, file_existence will be .TRUE. if
the specified file or unit exists; it will be .FALSE. otherwise.

open_status returns .TRUE. if the specified file is connected (i.e. open) at the
time of an inquire-by-file; returns .FALSE. otherwise. In an inquire-by-unit operation,
open_status returns .TRUE. if there is an open file connected with the specified unit;
returns .FALSE. otherwise.

In an inquire-by-unit operation, name_status returns .TRUE. if the file
connected to unit_spec has a name (i.e. it is not a scratch file); returns .FALSE. if the
file is a scratch file or if there is no file connected with the specified unit. In an
inquire-by-file operation, name_status returns .TRUE. if the file is open; returns
.FALSE. otherwise.

fname, access_type, yes_or_no, format_mode, and blank_mode are
character variables. Note that the values of these variables are defined by the
execution of the INQUIRE statement, so that they give information about the
properties of the file/unit in question. file_name, on the other hand, is a character
expression that already has a value before the execution of the INQUIRE statement
(in case of an inquire-by-file). Similarly, in case of an inquire-by-unit, unit_spec is an
integer expression that has a fixed value before the execution of the INQUIRE
statement. An asterisk (*) may also be used as unit_spec.

fname is a character variable used in conjunction with the NAME specifier. In
an inquire-by-unit operation, fname retumns the name of the file connected to
unit_spec. If the file does not have a name, then fname is not defined. In an inquire-
by-file operation, it returns the value of file_name.

unit_number is an integer variable used in connection with the NUMBER
specifier. In an inquire-by-file operation, unit_number returns the unit number of the
file connected to file_name. In an inquire-by-unit operation, it returns the value of
unit_spec. The NUMBER specifier must not be used if UNIT = *.

The character variable yes_or_no returns 'YES', 'NO', or 'UNKNOWN'.
Note that such a variable is used with four different specifiers: SEQUENTIAL,

DIRECT, FORMATTED, and UNFORMATTED. Of course, a different character variable

212

name (represented here by the generic name yes_or_no) must be used with each of
these specifiers.

The character variable access_fype returns ' SEQUENTIAL' Of 'DIRECT'.

The character variable formati_mode returns 'FORMATTED' oOf
'UNFORMATTED'.

The character variable blank_mode returns "NULL' or 'ZERO'.

The RECL specifier can be used to determine the length of each record in a
direct access file. Note that record_length is an integer variable. Length of a record is
normally measured in bytes.

The integer variable record_number used with the NEXTREC specifier returns
the number of the next record in a direct access file. It will return 1 (the number of
the first record) if the file is connected but no records have yet been read or written.

All the specifiers except UNIT and FILE may be used in either an inquire-
by-unit or an inquire-by-file operation. (The UNIT specifier cannot be used in an
inquire-by-file operation, whereas the FILE specifier cannot be used in an inquire-
by-unit operation.) For the INQUIRE statement to return the properties of a file,
however, the file must be open at the time of the execution of the INQUIRE
statement. This means that, if the file is not yet connected, the variables fname,
unit_number, record_number, access_type, format_mode, record_length,
blank_mode, and the four character variables represented by yes or_no will not be
defined upon the execution of the INQUIRE statement. Exceptions to this are as
follows. The EXIST specifier can be used to check the existence of an unopened
file. The OPENED specifier can be utilized to determine if a file is open or not. As
noted before, the NAMED specifier can also be used with an unopened file, although
such a usage may not be very meaningful: name_status always returns .FALSE. for
an unopened file. The UNIT, FILE, IOSTAT, and ERR specifiers can be used with

not-yet-opened files.

6.8 Formatted versus Unformatted Files

At the beginning of this chapter it was mentioned that there are three types of
records in FORTRAN. We have already discussed the end-of-file record at some
length. This record is important for files that are accessed sequentially, and it is
normally written by means of the END FILE statement. On most FORTRAN systems

213

the cLOSE statement will also perform this function in case the END FILE statement
is omitted.

A formatted record consists of a sequence of characters selected from
those that are allowed by the compiler being used. A formatted record is written by
using formatted output statements. Recall that there are two types of formatted
output: User-formatted output and list-directed output. Both of the following
statements, for example, generate formatted records:

WRITE (UNIT
WRITE (UNIT

1, FMT = *) X, Y, Z
10, EMT = '(3F7.2)') X, Y, %

Each of these statements produces a new record. A formatted /O statement may

read or write more than one record by using a suitable format. For example:
WRITE (UNIT = 2, FMT = '(2I4 / F7.2)') N, M, X

A formatted record must be read by a user-formatted or a list-directed
formatted input statement.

It must thus be clear that, with the exception of end-of-file records, all the
records written or read by the programs we have seen so far in this book were
formatted records. A formatted record can also be generated by some means other
than a FORTRAN program; e.g. it may be typed at the keyboard. Each program line
of a FORTRAN source file (typed using an editor and the keyboard), for example, is
a formatted record. Similarly, each line of butput printed (using either list-directed or
user-formatted output) into a file is a formatted record. Each data item in a formatted
record is represented as a string of characters, i.e. in a form human beings and
different types of computers can understand.

The internal binary representations of data are stored directly in an
unformatted file. An unformatted record consists of a sequence of values in a form
that depends on the type of computer used to generate it. Unformatted files are
therefore less portable, but they can generally be processed more quickly. This is
because the work involved in converting values from their internal binary
representation into character form, or vice versa, is eliminated. An unformatted

record is generated by an unformatted wRITE statement. For example:

WRITE (UNIT
WRITE (UNIT

2) X1, X2, X3
1, IOSTAT = IOS) M, N

o

Similarly, an unformatted record can only be read by an unformatted READ

statement:

214

READ (UNIT
READ (UNIT

10) Y
10, IOSTAT = I0S) A, B

i

It should be added that an unformatted /O statement will always read or write
exactly one record. The number of data items in the input list of an unformatted
READ statement should therefore be equal to or less than the number of items in the
unformatted record. In the latter case, the last few items in the record are ignored.

Generally speaking, unformatted input and output are much faster than
formatted input and output. This may become an important consideration when
repeatedly writing or reading large data files. There are two additional benefits to
using unformatted 1/O. First, files generated via unformatted output are often smaller
than formatted files. Second, because no conversions (from interal binary form to
character form and then back to internal form) are made, the internal precision of the
machine is preserved during data transfer. This is relevant for real numbers and is
due to the difference in precision of the intemal and the external character
representations of real data. On the other hand, the particular computer system and
the compiler used to generate an unformatted file determine the form of each record
of that file. As a result, unformatted files are more difficult to move from one type of

computer to another, i.e. they are less portable.

Example 6.4:

A large data file that will be repeatedly processed on the same (type of) computer is best
defined as an unformatted file. The file named MAIL. BIN in this example represents this type
of a file. It contains the names and mailing addresses of, say, the customers of a commercial
organization. This list of addresses can be updated (expanded) to include the addresses of
new customers by running the following program. Note that the names and addresses of new
customers are read from a formatted file named UPDATE.TXT. This file may have been
generated using another type of computer at a different location. For ease of transport from
one type of computer to the other, it has been defined as a formatted file.

PROGRAM MERGE
c***-k7\-*************************************k*******************************
Program merges two files MAIL.BIN and UPDATE.TXT
by appending the contents of UPDATE.TXT to the end
of the old mail list file MAIL.BIN. The program
generates MAIL.BIN if it does not yet exist.

UPDATE.TXT contains new names and addresses to be
added to MAIL.BIN. UPDATE.TXT is a formatted file.
c***************i‘***‘k**

IMPLICIT NONE

CHARACTER*19 OLDDAT (4), NEWDAT (4)

CHARACTER*1 CH

LOGICAL EXISTS

INTEGER IO0S

INQUIRE (FILE = 'MAIL.BIN', EXIST = EXISTS)

Qa0

IF(EXISTS) THEN

OPEN(UNIT = 1, FILE = 'MAIL.BIN', FORM = 'UNFORMATTED',
* ACCESS = 'SEQUENTIAL', STATUS = 'OLD', IOSTAT = I0S)
IF({I0S.NE.0Q) STOP 'Error while opening MAIL.BIN.'
BELSE
OPEN(UNIT = 1, FILE = 'MAIL.BIN', FORM = 'UNFORMATTED',
* ACCESS = 'SEQUENTIAL', STATUS = 'NEW', IOSTAT = I0S5)
IF(I0OS.NE.0O) STOP 'Error while opening MAIL.BIN.'
ENDIF

¢ Make sure MAIL.BIN is positioned at the beginning of its first record.

REWIND (UNIT = 1)
C Connect the new file UPDATE.TXT.
OPEN (UNIT = 2, FILE = 'UPDATE.TXT', FORM = 'FORMATTED',
* ACCESS = 'SEQUENTIAL', STATUS = 'OLD', IOSTAT = IO0S3)
IF(IOS.NE.Q) STOP 'Error while opening UPDATE.TXT.'
C Position MAIL.BIN to just before the end-of-file record so that
C new names and addresses can be appended at the end of the file.
DO WHILE({.TRUE.)
READ (UNIT = 1, END = 10, IOSTAT = IOS) OLDDAT
IF(IOS.NE.0O) STOP 'An error occurred while reading MAIL.BIN.'
END DO
10 BACKSPACE (UNIT = 1)
C Read the contents of UPDATE.TXT. Write them to the end of MAIL.BIN.
DO WHILE (.TRUE.)
READ (UNIT = 2, FMT = 100, END = 20, IOSTAT = I03) NEWDAT
100 FORMAT (A/A/RA/A)

IF(IOS.NE.Q)STOP 'An error occurred while reading UPDATE.TXT.'

WRITE{UNIT = 1, IOSTAT = I0S) NEWDAT
IF(IOS.NE.Q) STOP 'An error occurred while writing MAIL.BIN.'
END DO
20 CLOSE (UNIT = 2)
END FILE(UNIT = 1)
PRINT*, 'Merge complete. Type E to see MAIL.BIN on the screen. '
PRINT*, 'Type any other character to end execution of program. '
READ '(A)', CH
TF(CH.NE.'e' .AND. CH.NE.'E') THEN
CLOSE (UNIT = 1)
STOP 'Ending execution. Bye.'
ENDIF
C Display the contents of MAIL.BIN on the computer screen.
REWIND (UNIT = 1)
DO WHILE(.TRUE.)
READ (UNIT = 1, END = 30, IOSTAT = 108) NEWDAT
IF(I0S.NE.0Q) STOP 'An error coccurred while reading MAIL.BIN.'

PRINT ' (1X,4(A,1X}))', NEWDAT
END DO
30 CLOSE(UNIT = 1)

END

215

To try and test this program, prepare a file named UPDATE.TXT using a text editor. A name

and the corresponding address in this file should be typed in the following form:

Name Surname

Address line #1
Address line #2
Address line #3

216

A new file named MATL.BIN will be generated during the first run. After running the program
once in this way, prepare a different version of UPDATE.TXT (containing different and new
names and addresses) and run the program again. This second run will update the previous
version of MATL.BIN by appending the new data at the end.

Example 6.5:

The following program further illustrates the use of the INQUIRE, OPEN, END FILE, CLOSE,
BACKSPACE, and REWIND statements. Notice that the program utilizes the subprograms
STRLEN, NMCASE, and UPCASE developed earlier (cf. Chapter 5). Although this is the largest
program in this book, it is relatively straightforward and you should have no difficulty in
understanding it.

Note that, despite its size, the program may have to be further developed and
improved to be useful in practice. For example, the following features may be desirable: The
ability to delete or modify an existing name and/or telephone number. The ability to search
the database using a last name only to obtain a list records with the same last name, or the
ability to specify a telephone number to find the corresponding name, etc. Adding home
addresses, business addresses, fax numbers, e-mail addresses, etc. to the database may also
be desirable.

The database is generated as a sequential-access file in this example. The use of a
direct-access file may have to be considered if the program is going to be further developed.
As a matter of fact, the program may have to completely re-designed to incorporate some of
the above mentioned enhancements.

PROGRAM NAMIST
C**
C Program to generate, update, and read a database of
C names and telephone numbers. More than one phone number
C can be stored for a given name. The name of the file
Cc to be generated, updated, or read is specified by user.
C**
IMPLICIT NONE
INTEGER I0S, NTEL, STRLEN
CHARACTER ACT*1, REPLY*1, FNAME*12, UPCASE*1l
CHARACTER LAST*12, FIRST*12, TEL*20, SURNAM*12, NAME*12
LOGICAL VALID, EXISTS, FOUND
C Determine the desired program action
VALID = .FALSE.
DO WHILE (.NOT.VALID)
PRINT*, 'Specify action. Type:'
PRINT*, 'N for generating new file.'
PRINT*, 'U for updating old file.'
PRINT*, 'Q for query by name.'
PRINT*, 'S to stop this program:’
READ '(A)', ACT
ACT = UPCASE (ACT)
VALID = ACT.EQ.'N'.OR.ACT.EQ.'U’'.OR.ACT.EQ.'Q’' .OR.ACT.EQ.'S'
IF{.NOT.VALID) PRINT *,'Please enter a valid action: N,U,Q,S?’

END DO

IF(ACT .EQ. 'S') STOP 'Execution terminated by regquest.'

c Get filename and open it if name is wvalid
1 PRINT*, 'Enter file name:’
READ '(A)', FNAME
INQUIRE (FILE = FNAME, EXIST = EXISTS, IOSTAT = IOS)
IF(IOS.NE.O)THEN
PRINT*, 'Error while looking for file: '//FNAME
PRINT*, 'Check to ensure file name is valid.’
GO TO 1

ENDIF

IF(.NOT.EXISTS .AND. (ACT.EQ.'U' .OR. ACT.EQ.'Q'))THEN
PRINT *, FNAME (1:STRLEN(FNAME))//' does not exist.'

GO TO 1

ELSE IF(EXISTS .AND. (ACT.EQ.'U' .OR. ACT.EQ.'Q'))THEN
OPEN (UNIT = 1, FILE = FNAME, FORM = 'UNFORMATTED',

* ACCESS = 'SEQUENTIAL', STATUS = 'OLD', IOSTAT = I0S)

IF(IOS.NE.0) STOP 'Error while opening file.'

217

REWIND (UNIT = 1)
FLSE IF(EXTISTS .AND. ACT.EQ.'N')THEN
PRINT*, FNAME (1:STRLEN(FNAME))//

* ' already exists. Please type R to re-enter file name;'
PRINT*, 'type any other character' //
* ' to overwrite '//FNAME (1:STRLEN(FNAME))//':'

READ '{A)', REPLY
IF(REPLY.EQ.'R' .OR. REPLY.EQ.'r') GO TO 1
OPEN(UNIT = 1, FILE = FNAME, FORM = 'UNFCRMATTED',
* ACCESS = 'SEQUENTIAL’', STATUS = 'OLD', IOSTAT = IOS)
IF(IOS.NE.Q) STOP 'Error while opening file.'’
REWIND (UNIT = 1)
ELSE IF(.NOT.EXISTS .AND.ACT.EQ.'N')THEN
QPEN(UNIT = 1, FILE = FNAME, FORM = 'UNFORMATTED',
* ACCESS = 'SEQUENTIAL', STATUS = 'NEW', IOSTAT = IOS)
IF(IOS.NE.O)THEN
PRINT*, 'Error while opening file: '//FNAME
PRINT*, 'Check to ensure file name is wvalid.’
GO TO 1
ENDIF
ENDIF
C Generate new file
IF{ACT.EQ. 'N')THEN
CALL GETINP (1)
END FILE(UNIT = 1)
CLOSE (UNIT = 1)
STOP 'File generation complete.’
ENDIF
C Answer query
IF(ACT.EQ.'Q"')THEN
PRINT*, 'Enter last name:’
READ '{A)', LAST
PRINT*, 'Enter first name:'
READ '{A})', FIRST
CALIL NMCASE (FIRST)
CALI. NMCASE (LAST)
PRINT*, 'Searching database for '//FIRST(1:STRLEN(FIRST))
* /7' '//LAST(1:STRLEN(LAST))//':"
NTEL = 0
FOUND = .FALSE.
DO WHILE(.TRUE.)
READ (UNIT = 1, END = 2, IOSTAT = IOS) SURNAM, NAME, TEL
IF(IOS.NE.0) STOP 'Error while reading file.'
IF (SURNAM.EQ.LAST .AND. NAME.EQ.FIRST) THEN
FOQUND = .TRUE.
NTEL = NTEL + 1

PRINT '{1X,A,I1,A)', 'Tel-', NTEL,': '//TEL
ENDIF
END DO
2 IF(.NOT.FOUND) THEN
PRINT *, 'Reached EOF. No records for '//
* FIRST (1:STRLEN{FIRST))//' '//LAST{1:STRLEN(LAST))//’."'
ENDIF

CLOSE{(UNIT = 1)
STOP 'Name guery complete.’
ENDIF
c Update file by adding records at the end
IF{(ACT.EQ.'U") THEN
DO WHILE(.TRUE.)
READ(UNIT = 1, END = 3, IOSTAT = 10S) SURNAM, NAME, TEL
IF(IOS.NE.0) STOP 'Error while reading file.'
END DO
3 BACKSPACE (UNIT = 1)
CALL GETINP (1)
END FILE(UNIT = 1)
CLOSE (UNIT = 1)
STOP 'File update complete.’
ENDIF
END

218

SUBROUTINE GETINP (UNUM)
IMPLICIT NONE
INTEGER UNUM, I0S
CHARACTER LAST*12, FIRST*12, TEL*20, CH*1
LOGICAL LETTER
LETTER (CH) = (LLE({'A',CH).AND.LLE(CH,'Z')) .OR.
* (LLE('a',CH) .AND.LLE (CH, '2"))
DO WHILE(.TRUE.)
PRINT*, 'Enter last name (Type non-letter to stop.):'
READ '(A)', LAST
IF({.NOT.LETTER(LAST(1:1y)) RETURN
PRINT*, 'Enter first name:'
READ '(A)', FIRST
PRINT*, 'Enter tel: '
READ '(A)', TEL
CALIL NMCASE (FIRST)
CALL NMCASE (LAST)
WRITE (UNIT = UNUM, IOSTAT = IOS) LAST, FIRST, TEL
IF{IOS.NE.0) STOP 'Error while writing file.’
END DO
RETURN
END

6.9 Carriage Control Characters

In our study of user-formatted output in Chapter 1, it was emphasized that you
should avoid printing in the first column of the output line, as anything printed there
may not be displayed on the screen (see Exercise 24 in Ch.1). This problem was
solved by printing a blank character in the first column of the output line (by either
explicitly printing the blank character ' ', or by including 1xX as the first edit
descriptor in the format specification). The term “output line” (also called “output
buffer”) refers to an internal memory region of the computer. The computer uses the
relevant format specification to construct an output line internally in memory before
actually printing the line. The first character of the buffer is called the carriage
control character; it determines the vertical spacing for the line. The remaining
characters represent the line to be actually printed. The four valid carriage control
characters (also called line-control characters or printer control characters) are

listed in the following table:

Blank Prints the current line immediately below the previous line
(single-line spacing)

0 One blank line is left between the current line and the
previous line (double-line spacing)

+ Overwrites the previous line (no paper advance)

1 Advances to top of next page

219

Since the first character of the output line is removed and not printed, it is
important that you include an extra (carriage control) character at the beginning of
each output line that is to be sent to a printer or to another output device that the
compiler designates as a printer. This includes all line printers, some computer
terminals, and display screens of personal computers. Normally, you do not have to
use carmiage control characters when writing into an output file. Likewise, the first

character is not treated as a carriage control character in list-directed output.

Example 6.6:

You can determine whether carriage control is operative on your processor by typing and
running the following simple program. This program will also let you find out which of the four
control characters (*, ‘+, ‘4’ and ‘0") can be used to control the output on your computer’s
display screen.

PROGRAM CARRG

PRINT *, 'This is Line 1.'

PRINT 1, 'Line 2.'
1 FORMAT (' ', 45('X"), 1X, A)

PRINT 2, 'This is expected to overwrite line 2.°'
2 FORMAT('+', A)

PRINT 3, ‘This should be printed after one blank line.'
3 FORMAT('0', A)

PRINT 4, 'Is this sentence printed to a new page?'
4 FORMAT('1', A)

END

If carriage control is operative, the output of the program will look like the following:

This is Line 1.
This is expected to overwrite line 2.XXXXXXX Line 2.

This should be printed after one blank line.

———————————— New Page--————————=———
Is this sentence printed to a new page?

Remark: Microsoft FORTRAN Reference Manual cited at the References section of this book
states (on p.79) that “The screen behaves as if this carriage control character ['17] is ignored.”
Verify this by running the above program on the Microsoft FORTRAN system. Lahey
Computer Systems’ Compiler behaves similarly (i.e. the line is not printed on a new “page”),
except that a graphics character is displayed on the screen as the first character (try it).

If the first character of the output line is not one these four line-control
characters, then the effect on the printer is not defined. However, on most
processors, any other character will cause single spacing (it will have the same effect
as does 1x and ' '), and printing will take place at the next fine. (An exception to
this occurs when printing the characters 3 to 9 to the screen using the Lahey
compiler. See Exercise 3 below.). It should be remembered that the character in
question normally will not be printed/displayed. Since a terminal and a PC’s display
screen do not have the capabilities as a printer for spacing, '1' usually becomes an

invalid control character and causes single-spacing. (As remarked in Example 8.6,

220

however, a graphics character is displayed on the screen by the Lahey compiler. The
Microsoft compiler ignores *1* and it does not have any effect.) If the I/O system
does not use carriage control, the entire contents of the output line, including the
carriage control characters, will be displayed. This is what normally happens if you

use carriage control characters when printing into an output file.

Example 6.7:

Forgetting to insert a carriage control character when one is expected (e.g. when the output
device is a line printer or possibly a PC’s display screen) causes FORTRAN to use the first
character of the output line for line control instead of printing it. This can lead to unexpected
results in the output. As an illustration of what can go wrong, type and run the following
program using all the FORTRAN compilers available to you.

PROGRAM CARRG2

IMPLICIT NONE

REAL X, Y

X = 6.0

Y = 3.0

PRINT 1, X

PRINT 1, Y

PRINT 1, X*Y

PRINT 2, Y/X
1 FORMAT (F6.3)
2 FORMAT (F6.4)

END

if carriage control were fully operative, the result would look like the following:

6.000
3.000

This is certainly not the intended form of the output. Note that one line is skipped before the
value of Y/X is printed. This happens because, this value is 0.5000, and the leading zero is
interpreted as a line-control character. The output obtained (on the display screen) using the
Lahey compiler is similar to this, except that the “next page” character '1' does not cause
printing on a new “page”; a graphical character is displayed instead. The Microsoft compiler
ignores '1' altogether (it is not displayed and it does not have any effect). In any case, the
two formats should be rewritten as follows (try it):

1 FORMAT (1X, F6.3)
2 FORMAT (1X, F6.4)

Exercises:

3. Modify the program in Example 6.6 to print lines into a file. You should replace the PRINT
statements by WRITE statements. Do not change the FORMAT statements. What happens?
Are the carriage-control characters (* ', '+', '1' and '0') printed into the file? Do they
affect line spacing in the file? Next, remove these characters from the format specifications.
What happens?

4. Test the following program using both the Lahey and the Microsoft compilers:

PROGRAM CARRG3
c List-directed output (a control character not needed):
WRITE({ *, *) !'Testing carriage control characteristics.'
c User-formatted output without a control character:
WRITE(*, 1) '0 (zero}'

221

WRITE(*, 1) 'l (one)}’
WRITEB(*, 1} '2 (two)’
WRITE(*, 1) '3 {(three)’
WRITE(*, 1) '4 (four)'
WRITE{ *, 1) '9 (nine)’
WRITE(*, 1) '10 (ten)'
WRITE(*, 1) 'a (letter a)’
C User-formatted ocutput using a control character:

WRITE{ *, 2) '0 (zero)'
WRITE(*, 2) 'l (one)’
WRITE(*, 2) '2 (two)’
WRITE({ *, 2} '3 (three)'
WRITE(*, 2} '4 {four)'
WRITE(*, 2) '9 (nine)'
WRITE{ *, 2} '10 (ten)'
WRITE{ *, 2} 'a {(letter a)'

1 FORMAT (A)

2 FORMAT(1X, A)
END

Make sure that you understand the differences in the actions of the two compilers. (Hint: The
Microsoft compiler treats all characters other than the four control characters like the blank
character. What about the Lahey compiler?)

in their book on Fortran 90, Ellis et al. remark that “When a line of output is to
be sent to the output device designated as the printer, the Fortran output system will
remove the first character of the line and interpret it as a printer control character
which determines how much the paper is to be moved up before any remaining
characters of the line are printed. This apparently bizarre behavior reflects the way in
which some of the very early printers, back in the 1950s, actually worked and has

remained in Fortran ever since.”

6.10 Input Editing

Input formats can be employed to describe the line-by-line appearance of input data.
While input editing is not very frequently needed, a basic understanding of how it is
used may prove beneficial. For example, enclosing apostrophes must normally be
typed when entering a character string to be read by a list-directed READ statement.
User-formatted input, on the other hand, enables strings to be typed without
enclosing apostrophes (see Examples 6.5 and 6.8). A carriage control character

should not be included in a format specification used for input.

Example 6.8:

Consider the following program which writes even numbers up to a user-specified (odd or
even) number N into a file named by the user. Note that the output file name is entered by
the user interactively, i.e. it is not hard-coded in the program. The advantage is that the user
can specify a different output file name during each different execution of the program without
having to modify the source code.

222

PROGRAM EVENS
C******'k******'k**i:1\—*'k*************'k**
C Prints even numbers less than or egual to a user—entered
o integer N into an output file also specified by the user.
C*************k**

IMPLICIT NONE

INTEGER N, NUM, IOS

LOGICAL EXISTS

CHARACTER *12 FNAME

PRINT*, '"Even number generation program.'

PRINT*, 'Enter upper limit (a positive integer):

READ*, N
c Obtain a valid output file name

108 =1

DO WHILE(IOS.NE.O)

PRINT*, 'Enter output file name: '
READ '{A)', FNAME

INQUIRE (FILE = FNAME, EXIST = EXISTS)
IF(EXISTS) THEN

OPEN(UNIT = 1, FILE = FNAME, STATUS = 'OLD', IQOSTAT = IO0S)
IF(I0S.EQ.0)THEN
PRINT ' {1X,''Overwriting existing file: '', A)', FNAME
REWIND (UNIT = 1)
ENDIF
ELSE
OPEN(UNIT = 1, FILE = FNAME, STATUS = 'NEW', IOSTAT = 10s)
ENDIF
END DO

C Write even numbers up to N into FNAME
DO 5 NUM = 2, N, 2
WRITE (UNIT = 1, FMT = 10) NUM
10 FORMAT {1I5)
5 CONTINUE
END FILE(UNIT = 1)
PRINT*, 'Even number generation is complete.'
C Echo the contents of FNAME on the screen
REWIND (UNIT = 1)
PRINT ' (1X,A,1X,''contains the following:''/)',6 FNAME
DO WHILE ({.TRUE.)
READ (UNIT = 1, FMT = 10, END = 20) NUM
PRINT*, NUM)
END DO
20 CLOSE(UNIT = 1)
END

Since input-editing is employed, enclosing apostrophes for the input string (*even.out"')
need not and should not be typed. Positive even numbers (integers) up to the user-specified
number N are written into the output file FNAME using the edit descriptor I5. After all the
output data are written, the END FILE statement appends an end-of-file record after the last
file line. This must be the last record in any sequential file.

Note the first use of the REWIND statement. When a file that already exists (but is not
yet connected to the program) is opened, the initial position of the file is actually not defined.
To ensure that the file is positioned at the beginning of its first record (so that the first WRITE
statement will overwrite and replace that record), the REWIND statement is included. This is
usually not necessary because most FORTRAN compilers will position an existing file at its
initial point ready to read or overwrite the first record. For maximum portability, however, it
seems prudent to include the REWIND statement in this manner.

Normally, an output file is disconnected from a program (using a CLOSE statement)
once its generation is complete. In this case, however, the output file FNAME is kept open so
that the program can read its contents and display them on the display screen. The REWIND
statement positions the position pointer for the file with unit number 1 (i.e. FNAME) just
before the first file record. Note that the same edit descriptor (15) is employed to read the
integer data in the file as the one employed to write them. Once all the data in the output file
are read and displayed, the file is closed using the CLOSE statement. A sample execution
output (on the display screen) of the program is as follows:

223

Even number generation program.
Enter largest number: 16

Enter output file name: even.out
Even number generation is complete.
even.out contains the following:

The contents of the output file can also be viewed by typing ‘type even.out’ at the DOS
command prompt.

Exercises:

5. Consider Example 6.8: What happens if you omit the REWIND statement before reading the
contents of the file?

6. Consider the READ statement in Example 6.8: What happens if you use the format
specifications ' (13)' or '(I4)' to read the data (instead of ' (15) ') while still using
1 (15)* to write the data?

7. A single OPEN statement with the specification STATUS = 'UNKNOWN ' may be employed
in Example 6.8. Replace the program segment

INQUIRE (FILE = FNAME, EXIST = EXISTS)
IF(EXISTS) THEN

OPEN(UNIT = 1, FILE = FNAME, STATUS = 'OLD', IOSTAT = IOS)
IF(I0S8.EQ. Q) THEN
PRINT ' (1X,''Overwriting existing file: '', A)', FNAME
REWIND (UNIT = 1)
ENDIF
ELSE
OPEN (UNIT = 1, FILE = FNAME, STATUS = 'NEW', IOSTAT = IOS)
ENDIF
by the statements
OPEN(UNIT = 1, FILE = FNAME, STATUS = TUNKNOWN', TOSTAT = IO3)

IF(I05.%EQ.0) REWIND(UNIT = 1)

This approach should also work when a file with the specified name (the value of FNAME)
already exists. Actually, what happens when STATUS = "UNKNOWN' is compiler-dependent.
In most cases, the file will be treated as OLD if it already exists. If it does not exist, it will be
treaied as NEW.

To find out how your FORTRAN system behaves when STATUS is 'UNKNOWN', run
the modified program as follows. Use the same output file name for two consecutive runs
(during the second run a file with that name will already exist). If the program does not prompt
you to re-enter a file name during either of these runs, and if the execution of the program is
completed successfully, then the modified version of the program is valid. Make sure to use a
unique and new file name during the first run (i.e. a file with that name should not be present
in the directory you are working).

Next, try using STATUS = 'NEW'. If a file with the specified name already exists, the
program will prompt you to type a different file name. (Note: An execution-time error would
have occurred and the program would have terminated prematurely if we had not utilized the
TOSTAT specifier and the DO WHILE loop to ensure that a valid file name is ultimately typed.)
Alternatively, choose a new file name, and run the program twice using that same name (and

224

STATUS = 'NEW') each time. What happens in the second run? Finally, set STATUS =
'oLD' and run the program with a new output file name. What happens?

8. Note how the TOSTAT specifier is utilized in Example 6.8 to take corrective action in case
of an error. If an invalid file name is typed, the program simply prompts the user to enter a
different file name. As an exercise, rewrite the program without using the TOSTAT specifier.
You can, for example, replace the entire DO WHILE loop by the statement

OPEN (UNIT = 1, FILE = FNAME, STATUS = 'UNKNOWN')
If you type an invalid file name when you run the program, you will get an error message and

the execution will terminate prematurely. (Note: Allowed file names depend on the operating
system being used, i.e. DOS 6.22, Windows 95, etc.)

The edit descriptors used for input editing are similar to those used for output
editing (cf. Chapter 1). The most frequently used edit descriptors for input editing are

shown in the following table.

Iw For reading the next w characters as an integer.

Fw.d For reading the next w characters as a real number with d digits after the
Ew.d decimal place if no decimal point is present. The value of d is ignored if

a decimal point is present in the input field.

A For reading a character value. Sufficient characters will be read to fill the
input list item.

Aw For reading the next w characters as a character string.

nX For skipping n horizontal spaces (i.e. n columns are ignored).

Tn To advance to position n of the input record before reading the next
item, i.e. next item to be read starts at position n.

TLn Next item to be read is n positions before the current position.

TRn Next item to be read is n positions after the current position.

Lw Read the next w characters as the representation of a logical value.

The edit descriptors are best explained using specific examples. Consider the

following line of data:

123456789

The line contains the digits 1 through 9 in columns 1 through 9, respectively. To read
this line as a single integer to be stored in the integer variable M one can write
READ "(I9)', M

225

To read the same line as the four separate integers 12, 34, 56, and 789 one could
use the following statement:

READ '(I2,I2,I2,I3)"', M1, M2, M3, M4
The statement

READ '(3%,I6)', M
will ignore the first 3 columns and then read the next 6 as an integer; the value
456789 will consequently be stored in M. The statement

READ ' (I2,3X%X,I2)', M, N
will cause the value 12 to be stored in M and 67 in N. Columns 8 and 9 are ignored
because the format only specifies the first 7 positions. All of the statements

READ '(T3,I2,79,11,T2,I3)', M, N, K

READ ' (2X,I2,4X,I1,T2,1I3)', M, N, K

READ '(TR2,I2,TR4,I1,TL8,I3)', M, N, K
will read the value 34 into M, 9 into N, and 234 Qinto K. Note that the T edit
descriptor allows going back in the record and reading parts of it again. Note also
that TRn has the same effect as nx. The letters TL followed by a number n specify
a tab to the left, and cause the next position to be n positions to the left of the
current position.

When used for input editing the E and F edit descriptors are interpreted in the
same way. (On output, however, we know that they are different.) Using the same

input line given above, the statement
READ ' (F9.3)', X

will cause the value 123456.789 to be stored in X. On the other hand, the

statement
READ '(F4.1,F2.2,F2.0,TL5,F3.1)', X, Y, %, W
will cause the value 123.4 to be stored in X, 0.56 in Y, 78.0in Z, and 45.6 in w.

Consider what happens if the same statement is used to read the following line:

.451.78.9

The first edit descriptor F4.1 requires four columns to be read, and since these
(.451) contain a decimal point the second part of the edit descriptor is ignored and
the value .451 is stored in x. Similarly the value 0.7 will be stored in ¥, 8.0 in z,
and1.7inw.

An & edit descriptor without any field width v is treated as though the field

width was identical to the length of the corresponding input list item (a character

226

variable). For example, if the two character variables CHR1 and cHR2 are declared

by the statement
CHARACTER CHR1*8, CHR2*11

then the following two statements will have an identical effect:
READ '(A,A)', CHR1, CHR2
READ ' (A8,A11)', CHR1, CHR2

When an A edit descriptor is used with a field width w, there are three
possibilities: (i) The length /en of the input list item and field width w may be the
same. In this case, the forms A and aw have an identical effect, and the question of
blank padding or truncation does not occur. (ii) w may be less than /en. In this case
extra blank characters will be added at the right of the input character string, and the
result will be stored in the input list item. This is similar to the situation with
assignment. (iii) w may be larger than /en. In this case, the rightmost /en characters
of the input string will be stored in the input list item. Note that this is the opposite of
what happens with assignment.

The L edit descriptor is used in the form Lw, and processes the next w
characters to derive either a .TRUE. value or a .FALSE. value. The input field
consists of optional blanks, followed by an optional period, followed by T or F. If the
first non-blank character, other than a period, is not T or F, then an error will occur.
Any further characters after T or ¥ in the field are ignored. As an exercise, find out if

the lower case letters (t and £) are also accepted by your FORTRAN compiler.
6.11 Internal Files

An internal file is actually not a file; it is a character variable, a character array
element, a character array, or a character substring. An internal file is identified by
using the character entity in question in a READ or WRITE statement in place of the
unit identifier. Thus, for example, the character variable LINE used in the following

program segment is an internal file:

CHARACTER*20 LINE
WRITE (UNIT = LINE, FMT = '(2F10.3)'"') X, Y
READ (UNIT = LINE, EMT = '"(2(F7.0,3X))") X, Y

The program segment generates a character string in the variable LINE consisting of
the representations of the values of X and v with three decimal places. It then reads
these back into X and Y in such a way as to ignore the digits following the decimal

points. The effect is thus the truncation of the fractional parts of the values.

227

An internal file is a means whereby FORTRAN’s formatting process can be
used to convert information from one format to another without the use of any
external media. The program segment given above as well as the programs in
Exercise 9 and Example 6.9 are examples of this application of internal files.

An internal file can also be utilized to read a record of an external file more
than once without the need to backspace the external file. The entire record is first
read and stored in a character variable (the internal file). The contents of the intemal
file can then be read as many times as required by the program. A simple illustration
is presented in Exercise 10.

Exercises:

9. Type and run the following program. Among others, try the following values as input:
1.2345 (forX) and 5.6543 (for Y). What does the program do?

IMPLICIT NONE

REAL X, Y
CHARACTER*20 LINE
PRINT*, ‘'Enter X, Y:'
READ*, X, Y

WRITE (UNIT = LINE, FMT = ' (2F10.3)') X, Y
PRINT*, 'LINE =', LINE

READ (UNIT = LINE, FMT = '(2(F8.1,2X))'"') X, Y
PRINT '(1X, 2(A, F10.3, 2X))', 'X=', X, 'Y=', ¥
END

10. Type and run the following program. You should first prepare a text file named
ageinfo.txt. The first column will contain one of the letters M or . The second column
should be left blank. If you type M in the first column, type an integer between 1 and 999 in
columns 3 through 5.

PROGRAM INTFL2

IMPLICIT NONE

CHARACTER RECORD*5, GENDER*1
INTEGER AGE

OPEN(UNIT = 1, FILE = 'ageinfo.txt', STATUS = 'OLD')
READ (UNIT = 1, FMT = '(A)') RECORD
CLOSE (UNIT = 1)
READ (UNIT = RECORD, FMT = '(Al)') GENDER
IF (GENDER.EQ.'M' .OR. GENDER.EQ.'m')THEN
READ (UNIT = RECORD, FMT = ' (T3, I3)') AGE
PRINT ' (1X,A,1X,I3)"', "Age =', AGE
ENDIF
END

Next, modify the program by eliminating the character variable RECORD. Use the
BACKSPACE statement instead so as to read the line (record) again when the specified
gender is M.

if an internal file is a character variable, a character array element, or a
character substring, then it consists of a single record. The length of this record is
the same as the length of the variable, array element, or substring. If an internal file
is a character array, then each array element is a record. All records have the same

length, i.e. the length of array elements. In this case the entire file must be read or

228

written by means of a single READ or WRITE statement. This is because a READ or
WRITE statement on an internal file always starts at the beginning of the file. An
internal file does not contain an end-of-file record. Considering the properties
described here, it may be said that an internal file is a formatted sequential-access

file without an end-of-file record.

Example 6.9:

The following function subprogram converts a string consisting of digits into the equivalent
integer value. The value of 2*INTCH('55 '), for example, is the integer 110.

INTEGER FUNCTION INTCH (STRING)
C********************************-k*********************‘k********‘k**********
c Returns the integer value represented by STRING
o STRING may contain leading and/or embedded blanks
C********************vk***

IMPLICIT NONE

CHARACTER* (*) STRING

CHARACTER*5 FORMT

INTEGER L
FORMT = '(I)'
DO 1 L = LEN(STRING), 1, -1
IF(STRING(L:L).NE.' ') GO TO 2

1 CONTINUE

2 WRITE(UNIT = FORMT (3:4), FMT = '(I2)'}) L
READ (UNIT = STRING, FMT = FORMT) INTCH
RETURN
END

The input argument STRING is an assumed-length character argument. The function
uses a local character variable named FORMT as an internal file. The length of STRING
excluding any blank padding is first determined. It is assumed that all the non-blank
characters contained in STRING are digits. The number of digits (i.e. the length of STRING
excluding blank padding) is written into positons 3 and 4 within FORMT. This character variable
is then used as the format specifier in the READ statement which determines the value of the
function. Notice that STRING is also treated as an internal file in the READ statement. This
READ statement carries out the conversion from a character string to an integer.

Note that since the format specifier FORMT cannot exceed FORMT='(I99)°', the
maximum length (excluding blank padding on the right) of sTrRiNG is 99. This should be
sufficient for all practical purposes. You can test INTCH using the following driver routine.

IMPLICIT NONE

CHARACTER*99 STRING

INTEGER INTCH, NUMBER

EXTERNAL INTCH

PRINT*, 'Enter an integer enclosed in apostrophes:’
READ *, STRING

NUMBER = INTCH(STRING)

PRINT*, 'Number is =', NUMBER

END

Example 6.10:

Consider the problem of converting a positive integer from its base 10 (decimal)
representation into its equivalent representation in another base up to base 16. An aigorithm
to generate the digits of the converted number is the following: A digit of the converted
number is obtained by taking the remainder of the division of the number by the base. The
number is then divided by the base, with any fractional remainder discarded, and the process
is repeated until the number reaches zero.

229

This algorithm generates the digits of the converted number starting from the
rightmost digit. The following program, therefore, stores the digits of the converted number in
an array named CONNUM, rather than displaying each digit as soon as it is generated. Once
the conversion is finished, the digits can be displayed in the correct order.

Note that any digit of the converted number that is between 10 and 15 is displayed
using the corresponding letters, A through F. This is accomplished via the character array
DIGIT. For example, DIGIT(10)is 'A', DIGIT(11l) is 'B", elc.

Finally, instead of displaying the converted number directly, the number is written into
an internal file named TEXNUM, and the contents of this internal file are printed.

PROGRAM CONVRT
C**
o Program converts a positive decimal integer to another base
C The converted number is written into an internal file
c********************************'k***‘k*-k*‘;\—******7’:***********************‘k**

IMPLICIT NONE

CHARACTER*1 DIGIT{(0:15)

DATA DIGIT /*0', 'i', '2+, '3', '4', '5', 'e', 'T*,

% '8', |91, IAI, !B!, lctl lDl’ !Ell :F!/

INTEGER NUMBER, BASE, I, J, CONNUM({64)

CHARACTER*64 TEXNUM

PRINT*, 'Number to be converted? '

READ*, NUMBER

PRINT*, 'Enter base (2 to 16): '

READ*, BASE

I =1

1 CONTINUE
CONNUM(I) = MOD(NUMBER, BASE)
I =1I+1
NUMBER = NUMBER / BASE

IF(NUMBER .NE. 0) GO TO 1

TEXNUM = ' '

Do 2 J=1, 1I-1

WRITE (TEXNUM(I-J:I-J), '(Al)') DIGIT (CONNUM(J})
2 CONTINUE
PRINT*, 'Converted number: ', TEXNUM
END

