PROGRAMMING IN

FORTRAN

Fourth Edition

Omer Akgiray




PERMISSION TO COPY AND DISTRIBUTE:

This book may be copied and distributed in digital or printed form
provided that the front cover that contains the name of the author
and the title of the book is included with each copy. Individual
chapters may be copied and printed in the same way.

e-mail:

omer.akgiray@marmara.edu.tr




65

CHAPTER 3: LOOPS AND ARRAYS

3.1 The go TO Statement

The statements of a FORTRAN program are normally executed sequentially from top
to bottom, as they appear in the program listing. In many applications, however, the
sequence of steps to be performed depends on the input data and certain
intermediate quantities that are calculated during program execution. Program
structures which affect the order in which statements are executed, or which affect
whether certain statements are executed or not, are called control structures.
(When the structure in question consists of a single statement, such as the logical IF
statement, we usually speak of a control statement.)

We have already seen how the block-IF control structure can be used to
make decisions, based upon the vaiues of input and/or calculated data, as to which
sequence of program steps is to be performed. Another language element that is
often used to control the execution order of the instructions in a FORTRAN program
is the o To statement. The general format of the unconditional Go TO statement is
as follows:

GO TOm

where m is the statement number (label) of the executable statement to which
control is transferred. This statement instructs the computer to go, unconditionally, to
that part of the program beginning with the statement labeled m. A more frequently
used construct is a combination of the logical IF statement with the GO TO

statement:

IF(logical expression) GO TO m

This is a conditional transfer statement in that the transfer of control to the statement '
labeled m is contingent on the truth of the logical expression. If the expression is
false, then the co TO statement is not executed and execution continues with the
first program statement after the conditional o TO statement.

Example 3.1:

The following program illustrates the use of the Go TO and the logical IF statements.

PROGRAM PARGRM
c***************************************************************************
C Program calculates the area and the perimeter of a parallelogram
¢ with side lengths A and B, and angle THETA between these sides.

C***************************************************************************
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IMPLICIT NONE
REAL A, B, THETA, AREA, PER, PI
PI = ACOS(-1.)
c Read input data. Check for possible user errors.
PRINT*, 'Enter length of side A:
READ*, A
IF(A.LE.0.0) GO TO 1
PRINT*, 'Enter length of side B: '
READ*, B
IF(B.LE.0.0) GO TO 2
PRINT*, 'Enter angle (in degrees) between A and B: '
READ*, THETA
IF(THETA.LE.0.0 .OR. THETA.GE.180.0) GO TO 3

C Calculate and display results.
AREA = A*B*SIN(PI*THETA/180.)
PER = 2* (A+B)
PRINT*, 'Area ='!, AREA
PRINT*, 'Perimeter =', PER
STOP 'Execution successfully completed. '

C Error messages

1 PRINT*, 'Value entered for side A is ',A
PRINT*, 'You must enter a positive value.'
GO TO 4

2 PRINT*, 'Value entered for side B is ',B
PRINT*, 'You must enter a positive value.'
GO TO 4

3 PRINT*, 'Value entered for angle is ', THETA
PRINT*, 'You must enter a value between 0 and 180.°

4 STOP 'Execution terminated.'
END

Here is a sample run:

Enter length of side A:; 1.0

Enter length of side B: 2.0

Enter angle (in degrees) between A and B: 90,
Area = 2.00000

Perimeter = 6.00000

Execution successfully completed.

The following illustrates what happens in the case of illegal input:

Enter length of side A: -1.

Value entered for side A is -1.00000
You must enter a positive value.
Execution terminated.

3.2 Introduction to Loops

Sometimes we want the computer to repeat a portion of a program many times. One
obvious--and certainly awkward--way to accomplish this would be to retype the
relevant program statements as many times as they need to be executed. In many
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applications, however, this approach would necessitate the use of thousands or even
millions of program statements. Fortunately, such cumbersome programs never have
to be developed, as one of the fundamental capabilities of a computer is looping,
i.e. its ability to repetitively execute a set of statements.

In this and the following two sections, we shall learn how to implement loops
in FORTRAN. The discussion in this section is somewhat informal, our purpose
being the introduction, by example, of some of the basic concepts and methods
related to the implementation of loops in FORTRAN. A more careful study of loops is
presented in the next two sections.

One method of constructing loops in FORTRAN is the use of the co To
statement. This is possible because the statement to which control is transferred
may precede the Go To statement in the program. The use of the Go TO statement
to build a loop is demonstrated in the next example.

Example 3.2:

Suppose we want to produce a table showing equivalent pound and kilogram weights. (1 kg is
equal to 2.2046226 Ibs.) The program will read in the smallest and the largest weights as well
as the difference between successive weights that will be displayed in the table. Here is a
FORTRAN program that can be used to construct the desired conversion table:

PROGRAM LBTOKG
c***************************************************************************
c Program to generate a table of 1lb to kg conversion.
cC Each kg value is rounded up or down to nearest integer.
C**************************************************************************-k

IMPLICIT NONE

INTEGER LB, KG, MINLB, MAXLB, STEPLB

C Read loop parameters
PRINT*, 'Enter minimum and maximum weights (in pounds): '
READ*, MINLB, MAXLB
PRINT*, 'Enter step size (in pounds): '
READ*, STEPLB

C

c Print table headline
PRINT*, ' Pounds KGs'
PRINT*, ' = —=———= -——=1

Cc

c Calculate and display conversion table
LB = MINLB

1 KG = NINT(LB/2.2046226)
PRINT*, LB, KG
LB = LB + STEPLB
IF(LB.LE.MAXLB) GO TO 1
END

The statements that read in the loop parameters should be clear. Next, the variable LB
(weight in pounds) is initialized to the first weight that will be displayed in the table. The next
statement is the first statement of the loop and carries out the required conversion:
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1 KG = NINT(LB/2.2046226)

We see that the statement number (label) of this statement is 1. (Any number between 1 and
99999 could be used.) The operation within parentheses is real division and its result is
therefore real. The function NINT finds the nearest integer to this value and assigns this
integer value to the integer variable XG. Next, the result is printed: this generates a single row
of the desired table. The value of LB is then incremented and compared with the maximum
weight that we want to have displayed:

IF(LB.LE.MAXLB) GO TCO 1

If LB is strictly greater than MAXLB, then the co TO statement is not executed and the program
execution is ended by the END statement. Otherwise, control is fransferred back to the
statement labeled 1 and the corresponding value of KG is calculated and printed, and LB is
again incremented.

The statements of the loop are executed repeatedly as long as LB. LE.MAXLB is true,
and the loop terminates as soon as it is found to be false. (Due to the way we have
implemented our loop, the body of the loop will be executed at least once, even if the value of
LB.LE.MAXLB is never true. Note that the loop condition LB. LE.MAXLE can be false initially
only if there is an input error, i.e. if the initial value of LB-i.e. MINLB--is larger than MAXLB.)
Each pass through the loop generates a row of the conversion table. Here is a sample output:

Enter minimum and maximum weights (in pounds): 100 300

Enter step size (in pounds): 20

Pounds KGs
100 45
120 54
140 64
160 73
180 82
200 91
220 100
240 109
260 118
280 127
300 136

Remark: To make the program as simple as possible and to keep the focus on the
construction of the loop, no error-checking was included in the program. In a real application,
however, it is very important that you write code to handle all conceivable user-errors.

The looping method illustrated in the above program is just one of the ways
the Go T0 statement can be used to implement a loop:

1 KG = NINT(LB/2.2046226)
PRINT*, LB, KG
1B = LB + STEPLB
IF(LB.LE.MAXLB) GO TO 1
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An entirely equivalent but probably a more readable way of implementing this
loop involves the use of the CONTINUE statement and using indention to clearly
delimit the body of the loop:

1 CONTINUE
KG = NINT(LB/2.2046226)
PRINT*, LB, KG

LB = LB + STEPLB
IF(LB.LE.MAXLB) GO TO 1

The CONTINUE statement is used here simply to mark the beginning of the
loop, and its function is exactly described by its name: continue execution. Actually,
the CONTINUE statement is most often used to mark the end of a loop, as opposed
to its beginning (cf. the discussion of the Do loop in this chapter). Consider next the
following loop structure:

1 IF(LB.GT.MAXLB) GO TO 2
KG = NINT (LB/2.2046226)
PRINT*, LB, KG
LB = LB + STEPLB

GO TO 1
2 CONTINUE

If the initial value of LB, i.e. MINLB, is less than or equal to MAXLB (as it should be),
this loop will accomplish exactly the same task. Yet another alternative approach is

seen in the following structure:
1 IF(LB.LE.MAXLB)THEN
KG = NINT(LB/2.2046226)
PRINT*, LB, KG
LB = LB + STEPLB

GO TO 1
ENDIF

In what follows, we shall learn how to implement the last two loops above
using the DO WHILE loop structure which is arguably a more elegant loop control
structure. However, as is explained later in this chapter, the implementation of
certain types of loops in standard FORTRAN 77 necessitates the use of the co TO
statement. It is therefore important for you to understand the various ways in which
the co TO statement can be utilized to construct loop control structures.

3.3 The DO WHILE Loop

The use of the co TO statement for the construction of loops was described in the
previous section. In this section and the next, we shall study two loop control
structures--the DO WHILE loop structure and the DO loop structure--which make
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possible the development of more readable and structured FORTRAN programs by
obviating the need for the Go TO statement in the implementation of certain types of
loops. We shall first discuss the DO WHILE loop control structure:

DO WHILE(/ogical expression)

loop body
END DO

The logical expression is evaluated first. If it is true, then the Joop body is executed.
This sequence (i.e. evaluation of logical expression first, execution of /Joop body next)
is repeated as long as /ogical expression evaluates true. If the logical expression
evaluates false, the /oop body is skipped and execution continues with the first
statement following END Do.

The DO WHILE loop control structure was not included in standard FORTRAN
77". As a result, it was not available on some of the older FORTRAN compilers. On
some compilers, it used to be available in the slightly different form shown below:

WHILE(/ogical expression) DO

loop body
ENDWHILE

In case the DO WHILE loop is not incorporated in a FORTRAN compiler, one
of the following two forms utilizing the Go TO statement can be used instead of the
DO WHILE loop structure. The first alternative structure is one that employs the
logical IF statement:

m IF(.NOT.logical expression) GO TOn
loop body
GO TO m
n CONTINUE

where m and n are the statement numbers (labels) of the loop header and the loop
terminator, respectively. Here the loop body is repeated as long as the loop exit
condition

.NOT . logical expression

is false, i.e. as long as /ogical expression is true. Another structure that is equivalent
to the DO WHILE loop is the following:

! Standard Fortran 90 includes the DO WHILE loop and a more general DO-END DO structure.
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m IF(logical expression) THEN
loop body

GO TOm
ENDIF

Notice how we always indent the block of code (i.e. loop body) that is acted
upon by the control structure, leaving unindented the structure itself. For example,
the two final statements of the above format are \not indented, since they are part of
the control structure, not of the inside biock. Again, this is not required, but improves
the readability of the program.

Example 3.3:

The following program provides an example of the use of the DO WHILE statement. The
program determines the ged (greatest common divisor) of two integer values. The ged of two
integers is the greatest integer that evenly divides the two integers. For example, the ged of
10 and 20 is 10, because 10 is the largest integer that evenly divides both 10 and 20.

An algorithm that can be used to find the ged is as follows: Let M and N be two
nonnegative integers. Step 1: If N is zero, then ged is equal to M. Otherwise, execute Step 2:
Calcuiate the remainder of M/N, assign the previous value of N to M, assign the remainder of
M/N to N, and go back to Step 1.

PROGRAM GCD
c***************-k-k-k***-k***'k*************************************************
C Program to determine the Greatest Common Divisor
c of two nonnegative integer values
c*~k*********************************‘k**'k************************************

IMPLICIT NONE

INTEGER M, N, TEMP

PRINT*, 'Type in two nonnegative integers: '

READ*, M, N

DO WHILE (N.NE.O)

TEMP = MOD (M, N)

M =N
N = TEMP
END DO
PRINT*, 'Their greatest common divisor is', M

END
Sample program output:

Type in two nonnegative integers: 48 14
Their greatest common divisor is 2

Exercise:
1. What does the following program do? Type and run it. Try different input values for NUMBER.

PROGRAM DIGITS

IMPLICIT NONE

INTEGER NUMBER, REVERS, RDIGIT
PRINT*, 'Enter your number: '
READ*, NUMBER
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REVERS = 0
DO WHILE (NUMBER.NE.O)

RDIGIT = MOD (NUMBER, 10)
REVERS = 10*REVERS + RDIGIT
NUMBER = NUMBER/10
END DO
PRINT*, REVERS
END
Example 3.4:

This program illustrates the use of the DO WHILE loop structure to read, count, and analyze a
set of exam scores. The use of the library functions NINT, REAL, MIN, and MAX is also
exemplified in this program.

PROGRAM SCORES
C'k********7\-*****************************************************************
Cc Program to read, count, and analyze exam scores
C to determine mean, maximum and minimum scores.
C*******’k*********'k*’k**************'k****************************************

IMPLICIT NONE

INTEGER COUNT, SCORE, SUM, SMALL, LARGE

C Describe to the user how the scores are to be typed in.
PRINT*, 'Enter scores as integers between 0 and 100.°
PRINT*, 'Enter a value outside this range to stop.'

PRINT*, ' '
C
C Initialize SUM, COUNT, LARGE and SMALL
LARGE = 0
SMALL = 100
sSUM = 0
COUNT = 0
c

C Read the first score
PRINT*, 'Enter the first score: '
READ*, SCORE

c While not end-of-data, read, sum, and count scores
DO WHILE (SCORE.GE.0 .AND. SCORE.LE.100)
COUNT = COUNT + 1
SUM = SUM + SCORE
LARGE = MAX (LARGE, SCORE)
SMATL = MIN({SMALL, SCORE)
PRINT*, 'Enter score: '
READ*, SCORE

END DO

C

C Display the results
PRINT*, ' '

PRINT*, 'Number of scores =', COUNT
IF{COUNT.GT.0) THEN

PRINT*, 'Mean score =', NINT (REAL (SUM) /REAL (COUNT) )
PRINT*, 'Highest score =', LARGE
PRINT*, 'Lowest score =', SMALL

ENDIF

END
Here is a sample output:

Enter scores as integers between 0 and 100.
Enter a value outside this range to stop.

Enter the first score: 44
Enter score: 46 '
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Enter score: 50
Enter score: 60
Enter score: 58
Enter score: -1

Number of scores = 5
Mean score = 52
Highest score = 60

44

Lowest score

In the calculation of the mean score, the expression

NINT (REAL (SUM) /REAL (COUNT) )

is used to calculate the nearest integer to the actual average score. We see here a typical use
of the type conversion function REAL. For example, consider the 5 scores 58, 50, 60, 44,
and 46. suM and CcoUNT will then be 258 and 5, respectively. The result of the integer division

SUM/COUNT
would be 51 (fractional part being discarded) whereas the real division
REAT (SUM) /REAL (COUNT)

yields the value 51. 6. The displayed mean will then be NINT(51.6), i.e. 52, which is the
closest integer o the actual mean score 51 . 6. It would actually suffice to convert the value of
only one of operands to type real, i.e. we could write

REAL (SUM) /COUNT
or
SUM/REAL (COUNT)

as the integer operand of a mixed-mode division is automatically converted to type real before
the division is carried out. However, when the intention is the use of real arithmetic, it may be
preferable to convert all integers to type real explicitly to avoid any ambiguity.

We also see in this program an application of the functions MIN and MAX. Note that
the statements

LARGE = MAX (LARGE, SCORE)
SMALL MIN (SMALL, SCORE)

are equivalent to the statements

IF (SCORE.GT.LARGE) LARGE = SCORE
and

IF(SCORE.LT.SMALL) SMALL SCCORE

respectively.

Example 3.5:

In this example, we take up a practically very important problem, namely, the linear-curve fit
problem. Consider an experiment in which two variables, say X and Y, are measured to
establish a relationship between them. In the experiment, N data points, that is (X Yj) for i=7
to N, are obtained. Suppose we next plot the data on a graph paper, and observe that there
may be a linear relationship between X and Y. This means that the relationship between X
and Y can be described by an equation of the form
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Y=mX+b

where m is the slope of the straight line, and b is the Y-intercept. The problem then becomes
one of finding the values of m and b.

Note that, since there are two unknowns (m and b), two measurements (i.e. N = 2)
would be sufficient to determine them uniquely. This is so because, as a result of two
measurements, we obtain two equations

Y, =mX; +b
Yo=mXs+b

which can be easily solved for m and b. More often than not, however, N is larger than 2, and
the problem is overdetermined. Since, due to experimental errors or other practical reasons,
there will almost always be some scatter in the data, we cannot find any values for m and b
that will satisfy all of the equations

Yi=mX;+b (i=1,...,N)

In geometrical terms, no matter how we draw our straight line through the data points,
some of the points will not be on the line. The problem may then be stated as follows: find the
best straight line that represents the given experimental data.

The Method of Least Squares solves this problem using the following principle: The
straight line should be fitted through the given points [(X; Y for i=7 to N] so that the sum of
the squares of the distances of those points from the straight line is minimum, where the
distance is measured in the vertical direction (the Y-direction). The mentioned sum is a
measure of error as it is proportional to the discrepancy between the straight line and the data:

N
E=Y (¥ -b-mX,)
i=1

To find the values of m and b that minimize this error, we set

x _,
o
X _,
on

After carrying out the resulting algebra, the following equations are found:

:E:Aal§_~(:E:‘X2)i;
m= -
:E:QK? _'(EE}A:))(

where

X=%X,/N ad Y=37Y/N

All of the above summations are from i=7 to i=N. Here is a program that implements these
formulas. Notice how the DO WHILE loop is used.

PROGRAM LSQUAR

Chxhhdrrkrrdbhhhhhtrdhhhhhdhhdhhhhbhhbhhdhrhhhhhhhhhhddhhhhhhrhrhhrbdhrhbhhhdx

C Program to find the equation of the least squares line for a set

C of data points. Variables used are:

cC X, ¥ : (X,Y) is an observed data point
C COUNT : number of data points

C SUMX : sum of X's
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Cc SsuMyYy : sum of Y's

C SUMX2 : sum of the sguares of X's

C SUMXY : sum of the products X*Y

C XMEAN : mean of the X's

C YMEAN : mean of the Y's

C M : slope of the line Y = mX + b

C B : Y-intercept of the line Y = mX + b

Crhixkkkhhhdhkbhrddhdhhdhhdhhhhdhhdhhdhdhdhdhhhhhdhddhddhhhhdhddhbhhhrhhdrhhhx

IMPLICIT NONE
INTEGER COUNT
REAL X, Y, SUMX, SUMY, SUMX2, SUMXY, XMEAN, YMEAN, M, B

C Initialize the counter and the sums to 0, and read first point

COUNT = 0

SUMX = 0.

SUMXY = 0.

SUMX2 = 0.

SUMY = 0.

PRINT*, 'Enter (X,Y) = (-999, -9929) to stop.'

PRINT*, 'Enter the first point: '
READ*, X, Y

C While there are more data, calculate the necessary sums and
C read the next data point (X,Y).

DO WHILE ((X.NE.-999.).0R. (Y.NE.-999.))
COUNT = COUNT + 1

SUMXY = SUMXY X*y

SUMX2 = SUMX2 X*X

PRINT*, 'Enter the next point X, Y: '
READ*, X, Y

X
SUMY = SUMY + Y
+
+

END DO
XMEAN = SUMX/COUNT
YMEAN = SUMY/COUNT

M = (SUMXY - SUMX*YMEAN) / (SUMX2 - SUMX*XMEAN)
B = YMEAN - M*XMEAN

PRINT*, ' '

PRINT*, 'Equation of least squares line is Y = mX + b, where '
PRINT*, 'Slope = m =', M

PRINT*, 'Y-intercept = b =', B

END

The following is a sample run of this program:

Enter
Enter
Enter
Enter
Enter
Enter
Enter

(X,Y) = (-999, -999) to stop.
the first point: -1.1 2.05

the next point X, Y: ~-0.5 3
the next point X, Y: O 4.1
the next point X, Y: 1.5 6.8
the next point X, Y: 2 8

the next point X, Y: -999 -999

Equation of least squares line is ¥ = mX + b, where

Slope

=m=  1.90956

Y-intercept = b = 4.06437
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3.4 The DO Loop
The general format of the Do loop control structure is the following:

DO n lev = inv, endv, step
loop body
n CONTINUE

where /cv is the loop-control variable which may be of type real, type double

precision, or type integer; the loop parameters inv, endv, and step denote initial

value, end value, and step size (increment), respectively, for the loop-control
variable. Properties of the DO loop can be summarized as follows:

1. The loop parameters can be arbitrary integer, real, or double precision arithmetic
expressions’. (However, it is recommended that you always use integers as loop
parameters. Furthermore, always use an integer variable as the loop-control
variable. See Example 3.9 below.) Each expression is evaluated only once--when
the loop is first entered. The values of the variables in these expressions can be
modified within the Joop body, but the values of inv, endv, and step are not
affected by such changes.

2. The Joop body will be executed once for each value of lcv, starting with lcv equal
to the value of inv, and continuing until /cv passes the value of endv. After each
loop execution, the value of fcv is automatically updated by the value of step.

3. Formally (i.e. according to the FORTRAN 77 standard), when the Do statement is
executed an jteration count is first calculated using the formula

MAX (INT ( (endv-inv+step) /step), 0)

and the loop is executed that many times. If the iteration count is zero (e.qg. if inv >
endv and step > 0), the statements in the Joop body are not executed at all. In
such a case, the loop-control variable /cv will still be set to the value inv, because
this assignment takes place before the iteration count is tested.

4. step can be positive or negative but not zero. If step is omitted, it is assumed to
be +1.

5. Upon exit from the loop, lcv will have the value it would have had on the next pass
through the loop, if there had been one (see Example 3.7).

6. The value of the loop-control variable lcv cannot be altered within the loop body,
as its value is changed only by the automatic incrementing mechanism after each
execution of the /Joop body.

? The ability to use real and double precision variables as DO loop indices was added as a new feature
in FORTRAN 77. This feature has been deleted from Fortran 95.
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7. Transfer of control into the middle of a DO loop from outside by a GO TO statement
is not allowed. Control can be transferred from inside /oop body to outside,
however.

You should read these rules again after studying the example programs given
below.

Example 3.6:

If one were to display 10 dots into a shape of a triangle, an arrangement that fooks like the
following would be obtained.

in general, the sum of dots it would take to form a triangle containing N rows would be the
sum of integers from 1 to N. This sum is known as a triangular number. The following program
uses a Do loop to calculate the N-th triangular number, where N is specified by the user.

PROGRAM TRIAN1

C***************************************************************************

C Calculates the sum 1+ 2+ ... + N using a DO loop
c***-k-k**********************************************************************
IMPLICIT NONE
INTEGER I, N, SUM
PRINT*, 'What triangular number do you want?'’
READ*, N
SUM = 0
Dol11I-=1,N
SUM = SUM + I
1 CONTINUE
PRINT*, 'Triangular number', N, ' is ', SUM
END

Note that suM is initialized to zero. This is necessary because, SUM must have a
value assigned to it (i.e. it must be defined) before it is used on the right hand side of the
statement suM=sUM+I during the first execution of the loop.

After the first time the loop body (the statement SUM=SUM+I) is executed, the value
of suM will be 0+1,i.e. 1. After the second iteration, the value of suM will be 1+2,i.e. 3,
and so on.

Consider next the calculation of the N-th triangular number using a DO WHILE loop
instead of a DO loop. Note that the loop counter variable T must be initialized before its first
use in the logical expression I.LE.N.

PROGRAM TRIAN2

C*****************7\'**********************************************‘k**********

C Calculates the sum 1+ 2+ ... + N using a DO WHILE loop
C***************************************************************************

IMPLICIT NONE

INTEGER I, N, SUM

PRINT*, 'What triangular number do you want?'

READ*, N

SUM = 0

I =1
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DO WHILE (I.LE.N)
SUM = SUM + I

I=1I+1
END DO
PRINT*, 'Triangular number', N, ' is ', SUM

END

Finally, consider (type and run) the following program that generates the first N

triangular numbers and displays them in the form of a table.

PROGRAM TRIAN3

Chhrhhhhdhrhdhhdhdhddhdrhh kb hrdhhkkhhh bbbk hdrdh kb hkdkkhhkhhhkkhk kb hdk bk bk kkkdhk &

C Generates a table of triangular numbers
Chrhhdrdhhdkhdhhhdrhhrhhhhhddhh bbb hhdhdhhhhhhh kb kb bk hrhhh kb b dhkkkhkdkkhdhk bkt hkk

IMPLICIT NONE
INTEGER I, N, SUM
PRINT*, 'Type the largest triangular number in the table:'
READ*, N
PRINT*, 'Table of Triangular Numbers'
PRINT*, ' i Sum from 1 to i’
PRINTY*, '——— oo mmmmmmm '
SUM = 0
DO1I=1,N

SUM = SUM + I

PRINT ' (1X,I3,8X,I5)', I, SUM
CONTINUE
END

Example 3.7:

PROGRAM LOOP1
IMPLICIT NONE

Chrhkkkdkdhhhkhhhhhhdhhhhhhhhrhhdbhhhhhhkhrbdhh kb bk hhhkdhhkhhkhhhhrhhhhhhhbhbbrhhhd

C

Program demonstrates some of the properties of the DO loop

Crrxdddbdhkrhhrhdhhdrhhhhhhhhhbhhhhhhhdhrdhhdhhhhhrhhdhrrhhb kb hhkdhrhhk kb xkhkhh ok

INTEGER I
PRINT*, 'First loop:'
Do 11=1, 3
PRINT*, 'I =', I
CONTINUE
PRINT*, 'After exit I =', I

PRINT*, ' '
PRINT*, 'Second loop:'
Do 21 =3, 1, -1
PRINT*, 'I =', I
CONTINUE
PRINT*, 'After exit I =', I

PRINT*, ' '

PRINT*, 'Third loop:'

DO 3 I = 50, 10, -10
PRINT*, 'I =', I

CONTINUE

PRINT*, 'After exit I =', I

END
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Note that the same loop-control variable is used in all three loops. This is not
necessary, but it is allowed because I is reset to the appropriate initial value when each loop
is entered. Here is the output of this program:

First loop:

I= 1
I = 2
I = 3
After exit I = 4

Second loop:

I = 3

I = 2

I = 1

After exit I = 0
Third loop:

I = 50

I = 40

I = 30

I = 20

I= 10

After exit I = 0
Example 3.8:

Consider the problem of reading and processing exam scores (cf. Example 3.4). Suppose that
the number of scores is known in advance, and therefore there is no need for the program to
count the number of scores. In this example we modify PROGRAM SCORES of Example 3.4 to
read in the number of scores and use a DO loop instead of the Do WHILE loop to read in and
analyze the scores. Compare the following program with PROGRAM SCORES carefully to note
all the differences as well as the similarities.

PROGRAM SCOREZ2
c*****************************-k*********************************************
C Program to read and analyze exam scores
c to determine mean, maximum and minimum scores.
C************k*******************-k******************************************

IMPLICIT NONE

INTEGER I, N, SCORE, SUM, SMALL, LARGE

C Read in the number of scores
PRINT*, 'Enter the number of scores: !
READ*, N

c Describe to the user how the scores are to be typed in.
PRINT*, 'Enter scores as integers between 0 and 100.°

PRINT*, ' !
e}
o] Initialize SUM, LARGE and SMALL
LARGE = 0
SMALL = 100
SUM = 0
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C Read and sum N scores
DO1I=1, N
PRINT*, 'Enter score: '
READ*, SCORE
SUM = SUM + SCORE
LARGE = MAX (LARGE, SCORE)

SMALL = MIN(SMALL, SCORE)
1 CONTINUE
C
o] Display the results
PRINT*, ' !
IF(N.GT.0)THEN
PRINT*, 'Mean score =', NINT(REAL(SUM)/REAL{(N))
PRINT*, 'Highest score =', LARGE
PRINT*, 'Lowest score =', SMALL
ENDIF

END

Actually, the last statement of a DO loop does not have to be the CONTINUE
statement, but must be an executable statement other than an 1IFr statement, a co
TO statement, a DO WHILE statement, or another Do statement. For example,
instead of

po11=1, 3
PRINT*, 'I =', I
1 CONTINUE

we can write

pol1I=1, 3
1 PRINT*, 'I =', I

It is recommended here, however, that you always use the CONTINUE statement as
the loop terminator as it serves as a delimiter of the loop and leads to programs that
are easier to read.

Example 3.9:

Although FORTRAN 77 allows the use of real expressions as DO loop parameters, you should
always use integers as loop parameters. This is because Do loops with real (or double
precision) parameters will not always execute the same number of times on different types of
computers or with different compilers on the same machine. As a simple illustration, type and
run the following program:

PROGRAM BADDO
IMPLICIT NONE
REAL X
DO 1 X = 0.0, 1.0, 0.1
PRINT ' (1X,F10.8)', X
1 CONTINUE
END
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While this program would be expected to print 11 values from 0.0 to 1.0, it printed only the
first 10 values (using either Microsoft PowerStation Version 1.0 on a DOS 6.22/486DX PC or
Version 4.0 on a Windows 98/Pentium 11l machine), the last value printed was 0.90000010
(note that this is not exactly 0.9). Using Lahey's FORTRAN 77 compiler on the 486DX PC,
the program correctly generated 11 values.

Furthermore, the expression (for iteration count) INT ({1.+0.1)/0.1) evaluated to
11 with Version 4.0 of Microsoft’s compiler on the Pentium lll PC; it evaluated to 10 with the
Version 1.0 compiler running on the 486DX machine. Again, with both systems only 10 values
were printed on the screen, the last printed value being 0.90000010.

You should remember that many decimal fractions cannot be represented exactly in
the internal binary format used for real and double precision numbers. The decimal number
0.1 is an example of a real number that cannot be represented exactly by the computer. (The
representational error will depend on the number of bits in the mantissa: the more bits, the
smaller the error.) Therefore, the result of adding 0. 1 ten times may not be equalto 1.0.

As a solution to the problem we face in the above program, the loop can be rewritten
using an integer loop control variable and integer control parameters as follows:

PROGRAM GOODDO
IMPLICIT NONE
REAL X
INTEGER I
bol1I=1, 11
X = (I-1)*0.1
PRINT '({1X,F10.8)', X
1 CONTINUE
END

Notice how X is calculated inside the loop. This loop will always execute exactly 11 times
regardless of the processor (computer/compiler combination) used.

3.5 Nested Loops and Block-1F Statements

It is possible to have one Do loop lying completely within the loop body of another Do
loop. DO loops occurring in this way are called nested DO loops. The following
program demonstrates how nested loops are implemented.

Example 3.10:

PROGRAM LOOP2

Chrhhhhddhhhhhrdhdhhhhdrhdrd kb dhhhhhhhdhrhdhdhhhhhhddhhdhhdhhhhdhdrhhhhdhhdhhdhs

C Program to demonstrate how nested DO loops work
C***************************************************************************
IMPLICIT NONE
INTEGER I, J, M, N
PRINT*, 'Enter M and N: '
READ*, M, N
PRINT*, ' . I J I*J’
PRINT*, ' = e !
DO 10 T =1, N
DO 20 =1, M
PRINT*, I, J, I*J
20 CONTINUE
10 CONTINUE
END
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The output correspondingtoM = 3 andN = 2 is as follows:

Enter M and N: 3 2

I J I*J
1 1 1
1 2 2
1 3 3
2 1 2
2 2 4
2 3 6

Next consider the following program that prints a set of multiplication tables from 1
times up to ~ times, where each table only goes up to ‘7*1’. Notice the end value (1) of the
inner loop.

PROGRAM LOOP3

(SR R R R R o R i i R g S ST U A M A U L M R

c Demonstrates how nested DO loops work
C*-k-k*-k**********************************************************************
IMPLICIT NONE
INTEGER I, J, N
PRINT*, 'Enter N: '
READ*, N
PRINT*, ' I J I*J!
PRINT*, ' = e !
DO 10 I =1, N
DO 20 J =1, 1
PRINT*, I, J, I*J
20 CONTINUE
PRINT*, ' !
10 CONTINUE
END

Example 3.11:

Consider again the calculation of triangular numbers (see Example 3.6). Assume that we need
a program that can calculate as many triangular numbers as desired during a single run of the
program. Note that the programs TRIAN1 and TRIAN2 of Example 3.6 can be used to
calculate a single triangular number, whereas TRIAN3 generates a table of the first N
triangular numbers, where N is specified by the user. The program given below, on the other
hand, can be used to calculate any number of triangular numbers in any desired order. Note
that there is a DO loop lying within the body of a DO WHILE loop in this example.

PROGRAM TRIAN4
Crurhkhhhhhhhhhrdhhdhhhhhdhdrhrhdhhdhdrhdrddrhhhdrhddhhdhh bbbk hrhhhbhkr kb bhdhkk
C Calculates the N-th triangular number 1+ 2+ ... + N
C Multiple N values can be requested by the user
C*******************************************-k*******************************

IMPLICIT NONE

INTEGER I, N, SUM

CHARACTER*1 ANSWER

ANSWER = 'Y!
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DO WHILE (ANSWER.EQ.'Y' .OR. ANSWER.EQ.'y'")
PRINT*, 'What triangular number do you want?'
READ*, N
SUM = 0
Do 11I=1,N

SUM = SUM + I
1 CONTINUE
PRINT*, 'Triangular number', N, ' is ', SUM
PRINT*, 'Want another calculation? Type Y or y if you do: '
READ ' (A)', ANSWER
END DO
END

A block-IF structure may also be contained within the body of a bo loop, and
a DO loop may be contained in a statement block of a block-I1F structure. The
following rules should be remembered in dealing with nested control structures: In
the case of nested DO loops, the inner loop must lie completely within the outer loop.
DO loops and block-IF structures must not overlap. Furthermore, a DO loop
contained within a block-IF structure must not overlap two or more tasks of the outer
structure. We see that these rules follow from the general rule that was stated in
Section 2.6: All nested structures must be wholly contained within a single statement
group of the structure(s) they appear in. In the implementation of nested Do loops
the following additional point should be observed: Since the loop-control variable
cannot be altered within the loop body, the loop-control variable of the inner Do loop
must be different from that of the outer loop. The following are examples of invalid
program segments:
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NTINUE

It should be added that nested DO loops may have the same last statement.
The loop of Example 3.10 can therefore be written as follows:
DO 10 I =1, N
DO10 g =1, ™

PRINT*, I, J, I*J
10 CONTINUE

Furthermore, since the use of the CONTINUE statement is not necessary, the nested
loops above could also be written as
DO 10 I =1, N

DO 10 J = 1, M
10 PRINT*, I, J, I*J

Again, it is recommended that you include a distinct CONTINUE statement for each
DO loop. Having an unindented loop terminator and an unindented loop header,
together with an indented loop body, improves the readability of the program.

Example 3.12:

Given an angle x in radians, the sine of x has the following infinite series representation:
sin(x) = x - x3/3! + x5/5! - x7/7! + x9/9! - ...

While theoreticaily there is an infinite number of terms in this series, a good approximation of
the sine of x can be obtained by summing a finite number of the terms. The following program
reads in a positive integer N and an angle in degrees, converts the angle to radians, and

estimates sin(x) using the first N terms of the series.

PROGRAM SINE
O R s R T E TS T

c Program to calculate the sine of user-entered value X

Sin(X) = X - X**3/3! + X**5/51 — X*x*7/71 4+ ..

aQ Q0
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(o X : angle in radians
C N : number of terms used in the approximation
C SUM : sum of the first N terms
C***************************************************************************
IMPLICIT NONE
REAL X, SUM, RADIAN
INTEGER I, J, N, SGN, FACT
PRINT*, 'Enter an angle (in degrees) between 0 and 360: '
READ*, X
cC Convert to radians
X = RADIAN(X)
PRINT*, 'Enter the number of terms to be used: '

READ*, N

o}

o] Initialize SUM and SGN
suM = 0.0
SGN = 1

C

C Sum the first N terms
DO 1 I =1, N
FACT = 1
DO 2 J =1, 2*I-1
FACT = FACT*J

2 CONTINUE
SUM = SUM + SGN * X**(2*1-1) / FACT
SGN = -SGN
1 CONTINUE
PRINT*, 'Estimated value of sin(X) =', SUM
PRINT*, 'Library function sin(X) =',_ SIN(X)
END

C

REAL FUNCTION RADIAN (THETA)
C***************************************************************************
C Function to convert degrees to radians
c THETA: Angle in degrees (input to the function)
c***************************************************************************

IMPLICIT NONE

REAL THETA

REAL PI

PI = ACOS(-1.)

RADIAN = PI*THETA/180.

RETURN

END

The logic of the program is based on the observation that the first term of the series is
x, the second is —x*/3/, the third is +x°/5/, etc. so that the i-th term of the series is x*""/(2i-1)!,
with the proper sign.

For each value of J, i.e. at each iteration of the outer Do loop, the inner DO loop
computes the factorial (2i-7)!.

Note that scN is so initialized that the signs of all the terms are correctly accounted
for. Another valid -approach would be to eliminate the variable sGN completely from the
program, and instead use the following expression for summing the series (try it):

SUM = SUM + (~1)**(I+1) * X**(2*I-1) / FACT

The program also compares the estimated value of the sine of x with the value computed by
the library function sTN. The following are a couple of sample outputs:
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Enter angle (in degrees): 60

Enter the number of terms to be used: 5
Estimated value of sin(X) = 0.866025
Library function sin{X) = 0.866025

Enter angle (in degrees): 90

Enter the number of terms to be used: 4
Estimated value of sin(X) 0.999843
Library function sin({X) 1.00000

The above results are excellent. See, however, what happens when we attempt to calculate
the sine of 135 degrees:

Enter angle (in degrees): 135

Enter the number of terms to be used: 5
Estimated value of sin(X) 0.707409
Library function sin(X) 0.707108

We try to get a better estimate of sin(135) by using more terms in the approximation:

Enter angle (in degrees): 135

Enter the number of terms to be used: 10
Estimated value of sin(X) = 0.591919
Library function sin(X) = 0.707108

Enter angle (in degrees): 135

Enter the number of terms to be used: 15
Estimated value of sin{X) = -56.6007
Library function sin(X) = 0.707108

Note that, with the use of larger numbers of terms, not only the accuracy of the estimate has
deteriorated, but the result obtained with N=15 is simply absurd. Clearly something is amiss.

We go back and review our program to see if there are any programming errors.
Obviously, there are no syntax errors in the program. Furthermore, the overall logic of the
program appears to be correct as well, and this conjecture is strongly supported by the
accurate results obtained for 60 and 90 degrees. Even for 135 degrees, the result is
reasonably accurate when 5 terms are used in the approximation, and the problem arises
when N is large.

We are thus lead to suspect that something goes wrong with the higher order terms,
and to pinpoint the exact cause of the probiem, we add the following PRINT statement for
debugging the program:

2 CONTINUE
PRINT*, 'X**(2*%I-1) =',6 X**(2%I-1), '  FACT=',6 FACT
SUM = SUM + SGN * X**(2*I-1) / FACT

When we compile and rerun the program with this modification, we get the following output:

Enter angle (in degrees): 135
Enter the number of terms to be used: 10

X** (2*1-1)= 2.35619 FACT = 1
X**(2%I-1)= 13.0807 FACT = 6

Xx* (2*I-1)= 72.6196 FACT = 120
X**(2*I-1)= 403.158 FACT = 5040
X** (2*T-1)= 2238.19 FACT = 362880
Xx* (2*I-1)= 12425.6 FACT = 39916800
X**{(2*I-1)= 68982.7 FACT = 1932053504
X** (2*I-1)= 382967. FACT = 2004310016
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X** (2*1-1)= 0.212610E+07 FACT = -288522240
X** (2%1-1)= 0.118033E+08 FACT = 109641728
Estimated value of sin(X) = 0.591919
Library function sin(X) = 0.707108

Noting that x is 2.36 radians, we see that x*” is accurately calculated for all values of i (1 to

10), whereas the factorial of (2i-1) is not correct when i is greater than 6. Here we identify the
cause of the difficulty: The factorial-which is an integer-becomes oo large for the computer to
handle.

There is a maximum value that an integer constant or variable can have and this
maximum value is exceeded in this calculation. (As noted before, the maximum value of an
integer usually does not exceed 2,147,483,647, although it varies from computer to
computer.) This is termed infeger overflow.

We can circumvent this difficulty by declaring FACT as a real variable (make sure to
try it), but here is a more elegant remedy. The values of x*” and (2i-1)! become individually
very large as i increases, but the ratio H)/(Zi-1/,f remains small. It is really this ratio that we
want to calculate, and not the individual terms x” and (2i-7)/. In the modified version shown
below, the calculation of the factorial (2i-7)! and the related variable FACT are eliminated from
the program, and instead the inner loop computes the i-th term x*”/(2i-1)! directly and a new
variable named TERM is introduced for that purpose.

REAL X, SUM, RADIAN, TERM
INTEGER I, J, N, SGN

DO1I=1, N
TERM = 1.
DO 2 J =1, 2*%1-1
TERM = TERM*X/J
2 CONTINUE
SUM = SUM + SGN*TERM
SGN = -3GN
1 CONTINUE

The following are the results obtained with the new version of our program:

Enter angle (in degrees): 135

Enter the number of terms to be used: 10
Estimated value of sin(X) 0.707108
Library function sin(X) 0.707108

Enter angle (in degrees): 135

Enter the number of terms to be used: 15
Estimated value of sin{(X) .707108
Library function sin(X) .707108

o
o O

Exercises:
2. The value of = can be calculated using the following formula:

T 2x4x4x6x6x8x8x...
4 3x3x5x5xTxTx9x...

The following program implements this formula:
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PROGRAM CALCPI

IMPLICIT NONE

INTEGER N, I

DOUBLE PRECISION FACTOR

PRINT*, 'Enter N:'

READ*, N

FACTOR = 2.D0/3

DO1I=2, N

FACTOR = FACTOR * (2*I)/(2*I-1)*(2*I)/(2*I+1)

1 CONTINUE

PRINT*, 'Pi ', 4*FACTOR

PRINT*, 'ACOS(-1.DO) ', ACOS(~1.DO0)

END

Type and run this program. Try small (e.g. 10) and very large values (e.g. 1,000,000) for .
What happens if you declare FacTor as REAL ? (Try it.) Also modify the program to write

FACTOR = FACTOR * (4*I*I)/(2*I-1)/(2*I+1)

instead of the mathematically equivalent form given in the program. What happens when N is
large and why? Next try the following two versions:

FACTOR
FACTOR

FACTOR * 4*I*I/(2*I-1)/(2*I+1)
FACTOR * (4.*I*I)/(2*I-1)/(2*I+1)

Hint: Remember the hierarchy of arithmetic operations and the rules used in the evaluation of
mixed-mode expressions.

3. The following infinite series converges to 7/2:
1/(1x3) + 1/(3x5) + 1/(5x7) + 1/(7x9) + ...

a) Write a main program to calculate and print the sum of the first N terms in the series. The
number of terms (N>0) in the summation should be read in by the program. b) Write a main
program to estimate the sum of the infinite series as follows. The number of terms used in the
summation is not known in advance. The summation will continue until the next term to be
added is smaller than a user-entered tolerance TOL (a very small positive value). Hint: Use a
DO loop in part a, use a DO WHILE loop in part b.

4. Write a main program to estimate the value of the constant e (the base of natural
logarithms) using a finite number of terms of the following series:

e = 1+ 11+ 1721+ 1/3 + 1/4] + ..
The number of terms to be used in the approximation should be read in by the program.

5. Write a program which prints all odd positive integers less than or equal to N (an
interactively entered positive number), omitting those integers divisible by 3 or 7.

6. Write a program to calculate and print the following sum:

W12 - 1722 + 13- 142+ 1/5° - 1/6° + ...

The number of terms (N) in the summation should be read in by the program.

7. ltis known that, if |x] <1, then

In(l +x) _

1 2 1 1 3
—(+ox" +Q+=+0)x -
oy = ( 2)x ( 3 3)
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Write a function that returns an estimate of In(7+x)/(x+1) using the series given above. The
number of terms (N) in the summation and the value of x will be input arguments. Write a
main program to test this function. Note: The main program should read (or otherwise fix) and
check the value of x and take an appropriate action depending on that value.

8. Wirite two main programs to calculate and print an estimate of the following sum:

1 1 1
122732 +223242 +324252 +

a) In the first program, use the first N terms in the series, where N is specified by the user. b)
In the second program, continue the summation until the next term to be added is smaller
than a user-entered tolerance TOL (a very small positive value). Hint: Use a DO loop in part a,
use a DO WHILE loop in part b.

3.6 Structured Programming and Standard Control Structures

Undisciplined use of certain programming language constructs, most notably the co
TO statement, can lead to programs which are very difficult to read. The large cost of
maintaining and modifying large programs after they are placed into service requires
that programs be written to be easily understood, modified, and further developed by
programmers other than the original authors. Largely in response to this requirement,
certain principles of good programming practice have evolved over the years, and
this has given rise to the concept of structured programming.

The programming activity referred to as maintenance involves fixing bugs
and modifying programs to handle new and unforeseen situations. Maintainability is
the ease with which a program can be maintained after it is written and tested. The
need for such maintenance may arise either from undetected errors in the program
or from changes to the original requirements. It is quite common for more time and
resources to be spent in maintaining a program than was spent in originally
developing it. In general, structured programming leads to programs that are easier
to maintain and therefore helps reduce maintenance costs.

While the term ‘structured programming’ means many different things to
many different people, structured programming can be defined as a style of
programming designed to make programs more comprehensible. Structured
programs are more readable (compared to "unstructured programs") and can be
more easily understood and modified. For example, of the following two program
segments, the first is said to be structured, while the second is not:
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Structured:

IF (NUMBER.LT.O0) THEN

SGN = -1

ELSE IF(NUMBER.EQ.O)THEN
SGN = O

ELSE
SGN = 1

ENDIF

PRINT*, SGN

Unstructured:

IF(NUMBER.EQ.O) GO TO 1
IF(NUMBER.GT.0) GO TO 2
SGN = -1
GO TO 3

1 SGN = 0

GO TO 3

SGN = 1

3 PRINT*, SGN

N

Notice that, while the two program segments above accomplish exactly the same
task, it is much easier to tell what the first segment does.

In Section 3.1, we have defined confrol structures as program
structures/statements which affect the order in which statements are executed, or
which affect whether statements are executed at all. These are things like Do-loops,
block-IF's, DO WHILE loops, and so on. The goals of structured programming can
be accomplished in two ways. First, the essential control structures which are
needed repeatedly in programming must be learned and well-understood. Second,
the use of control statements whose controlled blocks are difficult to distinguish at a
glance should be avoided as much as possible. A consequence of this principle is
that, care should be exercised when using the Go TO control statement in
FORTRAN programs.

The above remark about the o TO statement warrants further explanation.
Execution of the Go TO statement causes a direct transfer of control to a specified
point in the program. This transfer is affected immediately upon the execution of the
GO TO. In order to identify to where in the program the transfer is to be made, a /abel
(statement number) is used. It is actually not the co To's which are potentially
harmful (although they may interrupt the normal sequential flow and hence one's
reading of a program); the statement labels are the real hazard: Whenever one
encounters a label while reading a program, the questions that immediately come to

mind are "Where does control come from to this statement?" (it could come from
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anywhere in the program) and "What is the condition that results in the transfer of
control to this statement?" (It could be anything!). In reading a program that includes
a lot of Go TO statements and labeled statements, the reader can easily become
confused as to the exact conditions under which a particular group of statements will
be executed. Such programs are sometimes referred to as spaghetti programs
because of their heavily intertwined logical structure.

It should be added that essentially every programming language contains the
GoTo statement. Thus we read on p.359 of Programming in C by Kochan (1990):
“The goto statement interrupts the normal sequential flow of a program. As a result,
programs are harder to follow. Using many gotos in a program can make it
impossible to decipher. For this reason, goto statements are not considered part of
a good programming style.”

A similar point of view is expressed by Gotifried (1985) on p.112 of
Programming with Pascal- “...it should be recognized that the use of the coTo
statement is discouraged in Pascal, since it alters the clear, sequential flow of logic
that is characteristic of the language. In fact some computer scientists advocate a
total ban on the GoTo statement, though it may be a bit extreme. There is
widespread agreement, however, that the cGoTo statement should be used very
sparingly, and only when it is awkward to use another control structure. Actually,
such situations are quite rare.”

There may be cases, however, in which a program segment written with the
GO TO is easier to understand than one without it. In other cases, e.g. when the DO
WHILE structure is not available on a particular compiler or to implement the Do-Until
and the Break iterations (see below), the Go TO statement becomes useful and
simply has to be used. On the other hand, if a particular type of control structure can
be implemented easily by using constructs such as block-1F, the DO loop, or the DO
WHILE loop (or the DO...END DO structure of Fortran 90), then these may be
employed and the use of the Go TO statement can be avoided.

It should be added that structured programming is more a popular movement
than a precise theory. While the above discussion may give the impression that
structured programming is synonymous with either “GoTo-less programming” or
“minimal use of the GOTO statement,” this is not exactly true for at least two reasons.

First, the actual distinguishing feature of a structured program (as opposed to
an unstructured program) is that it is easily readable and comprehensible. There are
indeed programmers who make liberal use of the o TO statement and still write
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readable and high quality code. It is also possible to write low quality and difficult to
read programs without using any Go TO statements or statement labels. Thus,
“‘GoTo-less programming” is neither a necessary nor a sufficient condition of
structured programming. One point on which everybody agrees, however, is that
careless and undisciplined used of Go TO statements may quickly lead to highly
unreadable programs. The main lesson here is, you should adopt and use
programming practices and a programming style that lead to well-organized,
readable, and maintainable programs.

Second, in addition to avoiding undisciplined use of Go TO statements, there
are other very important programming practices and principles that contribute to the
legibility and maintainability of programs. Inserting comments at appropriate places in
a program, using meaningful program and variable names, indenting blocks of code
within control structures, using extra blanks at appropriate places to improve
readability, etc. are examples. Modularity is also an important feature of structured
programs. |t is strongly recommended that you always break your programs into
small subprograms (functions or subroutines), each of which has a logically single
and coherent purpose. A commonly recommended practice is to keep program units
to no more than 50 lines of code. In this way, each program unit can be printed on a
single sheet of paper and more easily examined.

Structured programming, furthermore, is not the only important consideration
in the development of high-quality software; efficiency and portability are also very
important. Thus we read in Efficient Fortran Programming by Kruger (1990):
“Computing efficiency does not evoke quite the feelings that the co TO statement
does, but it is notwithstanding a contentious issue. it surely does not hold the
position it used to in the 1960s and early 1970s. At one point, some authors viewed
the whole matter of efficiency almost with disgust, placing all emphasis on program
structure and maintainability. Unfortunately this approach will often lead to rather
inefficient programs, and most professional programmers and computer scientists
now realize that there is more to programming than structure.”

We have indicated that, to be able to develop structured programs, one has
to have a good knowledge of certain essential control structures that are needed

over and over again in programming. These control structures are the following:

Simple Iteration: In FORTRAN, simple iteration is performed with a DO loop. The DO

loop (see Section 3.4) has the following general format:



93

DO nlev = inv, endyv, step
loop body
n CONTINUE

The majority of modern FORTRAN 77 compilers provide a nonstandard
language extension, namely the END DO statementa, that obviates the statement

label n. Eliminating statement labels in this way may improve the readability of
programs. This statement is employed as follows:

DO lev = inv, endyv, step

loop body
END DO

IF Structure: The block-IF structure and its special cases, the single-alternative and
the double-alternative forms, were discussed in Chapter 2.

Do-While Iteration: The DO WHILE loop described in Section 3.3 implements the Do-

While iteration. As explained in that section, the DO WHILE loop is not part of
standard FORTRAN 77, but it is included by many modern FORTRAN 77 compilers
as a non-standard feature:

DO WHILE(logical expression)

loop body
END DO

In anticipation of the discussion of the Do-Until iteration below, the following
point should be emphasized: The loop repetition test (i.e. evaluation of /ogical
expression) for the DO WHILE loop is at the beginning of the loop. The /oop body will
not be executed at all if the repeat condition (Jlogical expression) is false the first time
that the repetition test is encountered.

Do-Until _Iteration: The Do-Until iteration is another method of looping that is

occasionally needed in programming. Standard FORTRAN 77 does not provide a
structure (like the REPEAT-UNTIL loop in Pascal) that carries out this type of
iteration. The Go TO statement, however, can easily be employed to implement the

Do-Until iteration. Here is the general format:

n CONTINUE
joop body
IF(logical expression) GO TO n

3 The END DO statement has been included in standard Fortran 90.
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The loop body is repeated until logical expression is false. This type of iteration is
similar to the Do-While iteration (i.e. the bo WHILE loop) except for one important
difference: the loop repetition test is at the end of the loop. This means that the /oop
body will always be executed at least once, i.e. even if the repeat condition (logical
expression) is false the first time that the repetition test is encountered.

Break Iferation: In this type of iteration, the /oop body is repeated until some

condition tested at one or more points in the middle of the loop becomes true. The
following is how the Break iteration can be implemented in FORTRAN:

m CONTINUE
statements before the termination test
IF(logical expression) GO TO n
statements after the termination test
GO TOMm
n CONTINUE

Iterations using the Do Construct: All of the mentioned types of iteration can be

implemented using a single control structure, namely the Do...END DO construct,
in Fortran 90. It therefore seems appropriate to introduce this new Fortran 90
feature at this stage. Note that this construct is available as a nonstandard
extension in many commercial FORTRAN 77 compilers.

The DO...END DO structure takes one of two possible forms. The first form
(already mentioned above) is similar to the DO loop of standard FORTRAN 77 and is

referred to as the count-controlied Do loop:

DO fcv = inv, endv, step

loop body
END DO

Note that this is simple iteration. The other possible form of the DO...END DO

structure is
DO
loop body
END DO

In this case, there is no loop control variable /cv. Consequently, there must be some
other means of stopping the loop. This can be done by using the Fortran 90 EXIT
statement, also available as a nonstandard extension in many FORTRAN 77

compilers. The EXIT statement inside a loop causes the loop to terminate and



execution continues with the first executable statement following the END

statement. The Do-While iteration can therefore be implemented as follows.

DO
IF(.NOT.Jlogical expression) EXIT

loop body
END DO

The Do-Until iteration is also easily implemented:

DO

loop body
IF(.NOT.logical expression) EXIT
END DO

Here is how Break iteration is implemented:

Do
statements before the termination test
IF (logical expression) EXIT

statements after the termination test
END DO

3.7 Obsolescent Control Structures of FORTRAN
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DO

It was noted earlier (see Section 2.5) that the block-IF construct was not available
before FORTRAN 77. As a matter of fact, the logical IF statement was the most

powerful decision-making statement available at that time. As a result, programmers
employed the co TO statement in conjunction with the logical IF statement to

construct control structures which can now be implemented using the block-IF

structure. This is illustrated in the next example.

Example 3.13:

Since there is no way to include more than one dependent statement in a single logical IF
statement, FORTRAN 1V/66 programmers used to employ the Go TO statement to handle
multiple dependent statements. Consider the following FORTRAN 77 program that uses this

older approach.

PROGRAM OLDIF

IMPLICIT NONE

REAL X, SUMNEG, SUMPOS

INTEGER NNEG, NPOS

SUMNEG 0.

SUMPOS Q.

NNEG = 0

NPOS = 0

PRINT*, 'Program tc count and sum positive and negative'
PRINT*, 'values. Type 0 to mark the end of your data.'
PRINT*, 'Enter first value: '

READ*, X

[}
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C Begin summation and counting loop.
1 IF(X.EQ.0) GO TOo 10
IF(X.GT.0) GO TO 2
NNEG = NNEG + 1
SUMNEG = SUMNEG + X

GO TO 3
2 NPOS = NPOS + 1
SUMPOS = SUMPOS + X
3 PRINT*, 'Enter next value: '
READ*, X
GO TO 1

10 CONTINUE
o Loop ended. Print results.
PRINT*, 'Results: '

PRINT*, 'Number of neg values =', NNEG
PRINT*, ’‘Number of pos values =', NPOS
PRINT*, 'Sum of neg values =', SUMNEG

PRINT*, 'Sum of pos values =', SUMPOS

END

The program given above is certainly a valid FORTRAN 77 (and, Fortran 90) program.
However, it is possible to rewrite the program in a more readable form using the block-IF
construct and a DO WHILE loop:

DO WHILE (X.NE.O0)
IF(X.LT.0)THEN
NNEG = NNEG + 1
SUMNEG = SUMNEG + X
ELSE
NPOS = NPOS + 1
SUMPQOS = SUMPOS + X
ENDIF
PRINT*, 'Enter next value: '
READ*, X
END DO

There are three other obsolete decision-making constructs in FORTRAN that
needs to be mentioned. These are (i) the arithmetic IF statement, (ii) the computed
GO To statement, and (iii) the assigned Go ToO statement. All of these control
statements can lead to very hard to understand and error-prone programs. Therefore
their use in new programs is strongly discouraged. The arithmetic IF statement and
the computed G0 TO statement have been declared obsolescent in Fortran 95,
which means they are candidates for deletion from the language in its future
versions. The ASSIGN statement and the assigned GO TO statement were declared
obsolescent in Fortran 90 and have been removed from Fortran 95, which means
they are no longer a part of Fortran. Commercial compilers, however, may be
expected to continue to support these statements as nonstandard features.

it should be noted that these statements had been used extensively by
FORTRAN programmers in the 1960s and the 70s (and perhaps by some in the
80s), and you may come upon code that contains one or more of these old
constructs. The applicable rules are therefore briefly explained and a few simple

examples are given in what follows.
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Arithmetic 1F Statement. The general form of the arithmetic IF statement is

IF (arithmetic expression) Label,, Label,, Label;

where Label; , Label, , Label; are the labels (statement numbers) of executable
statements in the same program unit. The same statement label may appear more
than once. The arithmetic expression is an ordinary arithmetic expression of type
integer, real, or double precision. This expression is first evaluated. If it is negative,
then control is transferred to the statement referenced with Label,. If the expression
is zero, control passes to statement labeled Label,. If it is positive, control passes to
the statement referenced with Labels. Thus, the arithmetic IF statement has the

same effect as the following three consecutive statements:

IF (anthmetic expression.LT.0)GO TO Label;
IF (anthmetic expression.£Q.0)GO TO Label,
GO TO Label;

The program of Example 3.13 could have been written as follows:

1 IF(X) 4, 10, 2

4 NNEG = NNEG + 1
SUMNEG = SUMNEG + X
GO TO 3

2 NPOS = NPOS + 1
SUMPOS = SUMPOS + X

3 PRINT*, 'Enter next value: '
READ*, X

GO TO 1

10 CONTINUE

Computed Go_TO Statement. The general form of the computed o To statement is

GO TO (Label;, Label,, Labels, ..., Label, ) integer expression

where Label, , Label, etc. are the labels of m executable statements in the same
program unit. The number of labels m in the list is 1 or greater. The same statement
label may appear more than once in this list. If the value of infeger expression is 1,
then control is transferred to Label,. If the value is 2, control passes to Label,, and so
on. If the value of integer expression is out of range, i.e. if it is less than 1 or greater

than m, then the statement following the computed GO TO statement is executed.
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Example 3.14:

The use of the computed the Go- TO statement is exemplified in the following program. The
variable MONTH may have valid values between 1 (for January) and 12 (for December). Note
that winter includes the first two (1st and 2nd) and the last (12th) months of the year.

PROGRAM COMPGO
C******************************-k********************************************
C Program determines the season of the year
C for a given month number between 1 and 12.
c*-k****-k*'k*'k*k********************************************************‘k******

IMPLICIT NONE

INTEGER MONTH

PRINT*, 'Enter month number: '

READ*, MONTH

Go 10 (1,1,2,2,2,3,3,3,4,4,4,1) MONTH

PRINT*, MONTH, ' is not a valid month.'
STOP
1 PRINT*, 'Season is winter.'
GO TO 20
2 PRINT*, 'Season is spring.'
GO TO 20
3 PRINT*, 'Season is summer.'
GO TO 20
4 PRINT*, 'Season is autumn.'

20 CONTINUE
PRINT*, 'End Computed GO TO Illustration'
END

Assigned Go To Statement. To explain the assigned co TO statement, it is first

necessary to discuss the Ass1GN statement. This statement assigns the value of a

statement or format label to an integer variable. The general form is as follows:

ASSIGN label TO integer_variable

where fabel is an integer constant representing a format label or a statement label. It
should be emphasized that the effect of the AssIGN statement is different from that
of a computational assignment statement (which uses the = operator). For example,
the numerical value printed for the integer variable N after the execution of

ASSIGN 100 TO N

PRINT*, 'N =', N
will not be 100 (the value printed is compiler-dependent). Assuming that N will have
the value 100 after the execution of the above ASSIGN statement would lead to
erroneous results. After the ASSIGN statement has been executed, therefore,
integer_variable should not be used in an arithmetic expression,; it should be used

only in an assigned co TO statement or as the label of a FORMAT statement within
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the same program unit. This subtle point may be better appreciated after studying
Example 3.15 (see below).

The assigned co To statement has the following general form:

GO TO integer_variable, (Label,, Label,, Labels, ..., Labely, )

The current label assigned to integer_variable, at the time such a statement is
executed, must be one of the labels Label;, Labely, Labels, ..., Label, . Otherwise,
an execution-time error occurs. The labels in the list should belong to other
executable statements within the same program unit. The assigned Go TO statement
transfers control to the statement whose label is currently assigned to
integer_variable. The statement label assigned to infeger_variable can be changed
by another ASSIGN statement in the same program unit. These points and the use of

ASSIGN to specify a FORMAT statement label are illustrated in the next example.

Example 3.15:

To understand how the ASSIGN statement is employed, type and run the following program.
Note that X and N are ordinary real and integer variables, respectively. On the other hand, the
integer variable M is first employed as a FORMAT statement label. It is later used in the same
program as the target label of an assigned co TO statement.

PROGRAM ASSGGO
C********************‘k*************‘k*********‘k******************************
c Program demonstrates the ASSIGN statement
c and the assigned GO TO statement.
c****************************************‘k****‘k*****‘k***********************

IMPLICIT NONE

REAL X

INTEGER N, M
c Employ M as a FORMAT statement label

X = ACOS(-1.)

N=1

ASSIGN 20 TO M

PRINT M, N

ASSIGN 30 TO M

PRINT M, X
C Use M as the target label of an assigned GO TO statement

ASSIGN 200 TO M

GO TO M, (100, 200)

100 PRINT*, 'Statement labeled 100. This will not be printed.’
200 PRINT*, 'Statement labeled 200. This must be printed.’
PRINT*, 'End ASSIGN Statement Illustration'
C FORMAT statements

20 FORMAT (1X, 'Using FORMAT 20. N =', I3)
30 FORMAT (1X, 'This is FORMAT 30. X =', F9.5)
END

Next, modify the program so that it contains the following segments:

M = -99

PRINT*, 'M =', M

ASSIGN 20 TO M

PRINT*, 'After assigning 20 to M, M =', M

PRINT*, 'End ASSIGN Statement Illustration'’
M = 98
PRINT*, 'M =', M, ' 2*M =', 2*M
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Once all the /O and the assigned Go TO statements employing it are executed,
integer_variable may be assigned a value using a computational assignment statement or a
READ statement. It may then appear in an arithmetic expression as an ordinary integer
variable. The second program segment above exemplifies this point. Between the execution
of the Ass1cN statement and the execution of the assigned o TO or the /O statements that
employ integer_variable, however, a computational assignment statement or a READ
statement should not be used to define infeger_variable. To observe this restriction, carry out
the following modification and run the program again:

ASSIGN 30 TO M
M = 55
PRINT M, X

3.8 Arrays

in all the programs we have studied so far, a distinct name was used for each
variable value. In certain applications, however, it is preferable to employ the same
name to refer to a list of values that have the same common characteristics. This is
done by the use of arrays or subscripted variables.

When we carry out mathematical operations with a pen on a piece of paper
(or maybe with a computer and using word-processing software that can handle
mathematical symbols), we use a symbol with a varying subscript to denote the
elements of a given set. For example, T4, T,,...,T10 may be used to represent 10
distinct temperature measurements. With the utilization of subscripts, we can
develop very concise notation for a variety of mathematical operations on these
values. Thus, to express mean temperature we can write

1 10

7

10435
instead of

(T1+T2+T3+T4 +T5 +T +T7+ T3 +T9+T1o)/10

Subscripts are also used in FORTRAN, although they have a slightly different
appearance: we write T (1), T(2), ...,T(10) instead of Ty, Ta...,T1. A symbolic
name that is used with subscripts--such as T here--is called an array in FORTRAN.

To further demonstrate the motivation for the use of arrays, consider the
problem of analyzing 10 temperature measurements. Suppose that the analysis to
be carried out requires all 10 values to be saved and stored, as opposed each
temperature value being "forgotten" after being read in and used once. To store the
10 values, we need to introduce 10 variable names, say T1, T2,..., T10. (We can of
course use variable names like A, BCV, XE9Y, C, etc., but clearly T1, T2,... are more
meaningful names for temperature values.) To calculate the mean temperature we
can then use the following program statement:
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MEANT=(T1+T2+4T3+T4+T5+T6+T7+T8+T9+T10) /10

We can easily write a statement like this. Now imagine that we have 10,000 (ten
thousand) temperature measurements. To write the necessary FORTRAN statement
would require an dauntingly large amount of keypunching. We could do it, but such
an exercise is certainly not conducive to mental well-being. The solution of this
problem is, however, greatly simplified by defining an array of variables. To that end,
we write

REAL T (10000)

at the top of our program, before any executable statement. This array declaration
instructs the compiler to associate 10000 memory cells, designated as T (1), T (2),
..., T(9999), and T (10000) with the name T. We can use this array to store the
10,000 temperature measurements and then easily compute the mean temperature
by including a set of statements such as the following in our program:

SUM = 0.0

DO 1 I =1, 10000

SUM = SUM + T(I)

1 CONTINUE
MEANT = SUM/10000.

A linear array declaration, in the most general form, has the following format:

type name(low:high)

where fype may be any of the FORTRAN data types, i.e. INTEGER, REAL,
CHARACTER, etc.; low denotes the smallest subscript, and high denotes the largest
allowed subscript for the array indicated by name. The individual array elements are
written as name(low), name(low+1), ..., name(high). Clearly, low has to be less than
or equal to high, and the number of elements of the array is (high - low + 1). The

following are examples of valid array declarations:
REAL T(1:10000)
INTEGER AGE (0:49)

CHARACTER *24 NAME (1:100)
INTEGER COUNT (-5:12)

There is a simpler format that is frequently used in array declarations:

type name(size)

where size has to be a positive integer. When an array is declared in this way, the
smallest subscript is automatically assumed to be 1. The largest allowable subscript
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is then equal to size. For example, the following two declarations are exactly
equivalent:

REAL T(1:10000)
REAL T(10000)

The DIMENSION statement can also be used to declare an array. This

statement has the following form:

DIMENSION name(low:high)

The DIMENSION statement, however, does not declare the type of the array.
Consequently, a separate type declaration is needed to specify the type of the array.
For example, to declare INDEKS as a real array with 200 elements, we would have
to use the following two lines of code

REAL INDEKS
DIMENSION INDEKS (200)

instead of the single line

REAL INDEKS (200)

In defining and using arrays, the following points should be remembered: One
or more arrays and simple variables can be declared in the same declaration
statement provided that commas are used between entries in the declaration. Array
elements may be manipulated just as other variables are manipulated in program
statements. An array element is referenced by writing the name of the array followed
by a pair of parentheses enclosing a subscript. The subscript can be an integer
constant, an integer variable, or an integer arithmetic expression whose value is not
less than Jow and not greater than high. If the subscript falls outside the declared
range, then a run-time error which may manifest itself in very unpredictable ways will
result. It is therefore very important to make certain that all subscripts remain within
their allowed ranges.

Example 3.16:

PROGRAM ARRAYS

C************************************************************************'k-)r*

c Program demonstrates how linear arrays are declared and used
C********************************************************************‘k******
IMPLICIT NONE
INTEGER I, ORDER(-2:3), DOUBLE {4)
Cc
c Assign values to all array elements
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DO1I=1, 4
DOUBLE (I) = 2*I
1 CONTINUE
DO 2 I =-2, 3
ORDER(I) = I + 3
2 CONTINUE

c Print the values
PRINT*, 'Elements of the array ORDER: '
DO 3 I=1, 6
PRINT*, ORDER(I-3)
3 CONTINUE
PRINT*, ' '
PRINT*, 'Elements of the array DOUBLE: '
DO 4TI =1, 4
PRINT*, DOUBLE (I)
4 CONTINUE
END

Note that, for printing the elements of ORDER, we could have used the alternative loop
DO3I=-2,3
PRINT*, ORDER(I)
3 CONTINUE

The execution output of the program is the following:

Elements of the array ORDER:

G W

Elements of the array DOUBLE:

O O N

Example 3.17:

The Fibonacci sequence of numbers f, f;, fo, ... is defined f=0, f;=1, and the general formula
f.o =f.s + f (where /=0,1,2,...). This sequence is directly related to the “rabbits problem.”
Consider starting with a pair of grown rabbits. Assume the following: 1) Each pair of
rabbits produces a new pair of rabbits each month. 2) Each newly born pair can produce
offspring by the end of their second month. 3) Rabbits do not die in the time period
considered. The rabbit problem can now be stated as follows: How many pairs of rabbits will
there be at the end of ith month? A few minutes’ consideration will show that the answer is f.».

PROGRAM RABBIT

C***********‘k**********‘k*************************************************'k**

c Calculates and prints the first 20 Fibonacci numbers
C******************************‘k********************************************
IMPLICIT NONE
INTEGER F(0:19), I
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C FO and Fl are fixed by the following definitions
F(0) = 0
F(1) = 1
C Calculate subsequent Fibonacci numbers
DO1I=2, 19
F(I) = F{I-2) + F(I-1)
1 CONTINUE
C Print the numbers
bo 2 I = 0, 19
PRINT*, F(I)
2 CONTINUE
END

Example 3.18:

Press et al., in their acclaimed book named Numerical Recipes, state® “If you know what
bubble sort is, wipe it from your mind; if you don’t know, make a point of never finding out!”
Well, it is now our turn to find out what bubble sort is.

Bubble-sort method is an algorithm for arranging a group of N numbers in ascending
order. The method works like the following.

First, we compare the first two numbers in the list. If they are in order, we leave them
alone; otherwise, we interchange them. We do the same thing with the second and the third
numbers, then the third and the fourth, until we reach the last two numbers. At this point we
are guaranteed that the largest number in the list has "bubbled" up the list so that it is now the
last number in the list.

Next, we repeat the entire process for the first N-1 numbers. After we do this, the
second largest number will be in the second to last place. We keep repeating this process,
and after N-1 sweeps, the list of numbers will be sorted in increasing order. The following is a
program that implements this method:

PROGRAM BUBBLE
C***************************************************************************
c Program reads in an array of integers in arbitrary order,

o] and rearranges and prints the array in ascending order.
C***************************************************************************
IMPLICIT NONE
INTEGER I, J, N, TEMP, VALUE(100)
C
o Read input

PRINT*, 'Enter the number of values: '

READ*, N

IF(N.GT.100) THEN

PRINT*, 'N is too large. Execution terminated.'
STOP
ENDIF
pDO1I=1, N
PRINT*, 'Enter value: '
READ*, VALUE (I)
1 CONTINUE

* Numerical Recipes, by the way, is a very useful reference on numerical methods and contains a large
number of widely used FORTRAN programs.
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C Bubble sort
pDo21I =1, N-1
DO 3 J =1, N-I
IF (VALUE (J) .GT.VALUE (J+1) ) THEN
TEMP = VALUE(J+1)
VALUE (J+1) = VALUE (J)
VALUE (J) = TEMP

ENDIF
3 CONTINUE
2 CONTINUE
ol
c Print the sorted array

PRINT*, ' '
DO4I=1, N
PRINT*, VALUE(I)
4 CONTINUE
END

Shown below is a sample run:

Enter the number of values: 5
Enter value: 9

Enter value: -3

Enter value: 4

Enter value: -5

Enter value: 5

-5
-3
4
5
9

3.9 Generating Prime Numbers

Just about anyone learning to program is soon faced with the problem of writing (or
reading and understanding) a program that produces a table of prime numbers. This
is not because such a table has a notable use in engineering and science, but is
rather due to the fact that by considering this problem, it is possible to explain many
significant programming concepts and to exemplify several different constructs of the
particular programming language that is being studied. We take up this problem here
to illustrate and hopefully to further clarify various features of FORTRAN we have
discussed so far. These features include, among others, the Do loop, the DO WHILE
loop, the use of nested control structures, the logical TF statement, the co TO
statement, the use logical variables, and linear arrays. We shall also consider the
matter of efficiency.

A positive integer is a prime number if it is not evenly divisible by any other
integer, other than 1 and itself. The first prime integer is defined to be 2. The next
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prime is 3, as it is not evenly divisible by any integer other than 1 and 3. The integer
4 is not a prime number because it is evenly divisible by 2. There are several
methods that can be used to generate a table of prime numbers. If we want to
generate all prime numbers up to N, then the simplest approach to accomplish this is
to test each integer I up to N for divisibility by all integers from 2 to 1-1. If any such
integer evenly divides I, the T is not a prime; otherwise it is a prime. The following
program implements this approach.

PROGRAM PRIME1

C****~k**************************************-k******************************-k

c Determines and displays prime numbers up to user-entered value N
C**~k***7\'************************************-k*******************************
IMPLICIT NONE
LOGICAL PRIME
INTEGER I, J, N
PRINT*, 'Enter N: '
READ*, N
PRINT*, 'Prime numbers up to', N, ':’
PRINT*, ' '
o}
c Test integer I for divisibility by all integers from 2 thru I-1:
C I is prime if it is not divisible by any such integer.
DO1I=2, N
PRIME = .TRUE.
DO 2 J =2, I-1

IF(MOD(I, J) .EQ. 0) PRIME = .[FALSE.
2 CONTINUE
IF (PRIME) PRINT*, I
1 CONTINUE

END

Here is a sample run of this program:

Enter N: 60
Prime numbers up to 60:

~ U W

11
13
17
19
23
29
31
37
41
43
47
53
59
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Note that the outermost Do loop cycles through the integers 2 through N. The
loop variable T represents the value we are currently testing to see if it is prime. The
first statement in the loop assigns the value . TRUE. to the logical variable PRIME.
The inner loop is set up to divide T by integers from 2 to I-1. Inside the loop a test
is made to see if the remainder of the division /7 is zero. If it is, then I is not prime
because there exists an integer other than 1 and 1 itself that evenly divides I. In
that case, PRIME is set equal to . FALSE. to signal that I is no longer a candidate
as a prime number. When the inner loop finishes execution, PRIME is tested to see if
it is true. If it is, then no integer was found that evenly divided 1. Hence, I is prime
and its value is displayed. If PRIME is not true at the end of the execution of the
inner loop, then there was at least one integer between 2 and 1-1 that evenly
divided I. In that case, 1 is not prime and therefore its value is not printed.

While the program above generates the desired table, it has a number of
inefficiencies. The most obvious inefficiency results from checking even numbers.
Clearly, all even numbers greater than 2 are divisible by 2, and therefore cannot be
prime. The program should therefore skip even numbers as possible primes and as
possible divisors. (Remember that if an integer is evenly divisible by an even integer,
then it is also evenly divisible by 2, and hence cannot be odd. Since odd numbers
are not evenly divisible by even numbers, there is no need to consider even numbers
as divisors.) The inner loop of the program is also inefficient because the value of T
is always tested for divisibility by all values of J from 2 to 1-1. Actually, there is no
need to continue this testing once a number that divides T evenly is found, i.e. once
PRIME has been assigned the value .FALSE.. This inefficiency will be removed if
the execution of the inner loop is terminated as soon as PRIME is false. This can be
done by employing a D0 WHILE loop (instead of a DO loop) as the inner loop. The
following program implements these improvements:

PROGRAM PRIMEZ2
Chkhrhkhkhhkhkkhhk kA Ak Rh AR AR IRk hhhhkhhkhhhhh kR kh kA AR R R Ak hhrkhkkkrkhdhhkh k&

C Determines and displays prime numbers up to user-—entered value N
C*****************************'k***********-k*-k*******************************
IMPLICIT NONE
LOGICAL PRIME
INTEGER I, J, N
PRINT*, 'Enter N: '
READ*, N
PRINT*, 'Prime numbers up to', N, ':'
PRINT*, ' '
IF(N.GE.2) PRINT*, 2
C
o] Test odd integer I for divisibility by all odd integers from 3 thru I-2:
c odd integer I is prime iff it is not divisible by any such integer.
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DO1TI=3,N, 2
PRIME = .TRUE.

J =3
DO WHILE (PRIME .AND. J.LE.I-2)
IF(MOD(I,J) .EQ. 0) PRIME = .FALSE.
J=J+ 2
END DO
IF(PRIME} PRINT*, I
1 CONTINUE

END

While PROGRAM PRIMEZ is more efficient than PROGRAM PRIMEL, it is still
not very efficient. It is true that the issue of efficiency is not very important when we
want to generate a table of prime numbers up to 100, but efficiency may become an
important consideration, for example, if we want to generate a table of prime
numbers up to 1,000,000,000.

Further improvement in efficiency can be realized by noting that a number is
prime if it is not evenly divisible by any other prime number. This is because any
nonprime integer can be expressed as a multiple of prime factors. (For example, 10
has the prime factors 2 and 5; the nonprime integer 40 has the prime factors 2, 2, 2
and 5.) Using this information, we can develop a more efficient prime number
program. The program will test if a given odd integer is prime by determining if it is
evenly divisible by any other previously generated prime number. Since previously
generated prime numbers will be needed again and again in the program (as
opposed to being generated, printed, and then erased from memory), we shall
employ an array to store each prime number as it is generated.

Finally, it should be clear that any nonprime integer T must have as one of its
factors an integer that is less than or equal to the square root of I. Consequently, as
a further optimization of our program, we will test each integer I for even divisibility
only by all prime numbers up to the square root of I. Presented below are two
FORTRAN programs (PRIME3 and PRIME4) that implement these improvements:

PROGRAM PRIME3

C***************************************************************************

C Determines and displays prime numbers up to user-entered value N
c-k********************~k********'k***-k***********-k-k***************************
IMPLICIT NONE
INTEGER I, J, N, PINDEX, PRIME{100)
PRINT*, 'Enter N: '

READ*, N
PRINT*, 'Prime numbers up to', N, ':'
PRINT*, ' !
C
o Store the first two primes
PRIME (1) = 2
PRIME(2) = 3
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C PINDEX is the next free slot in the PRIME array

PINDEX = 3
Cc
c Test odd integer I for divisibility by primes less than or equal to the
C square root of I. I is prime if and only if it is not divisible by any
c such integer.

DO1I=25, N, 2
DO 2 J = 1, PINDEX-1
IF (PRIME (J) .GT. SQRT(REAL(I))) GO TO 4

IF(MOD(I, PRIME(J)) .EQ. 0) GO TO 1
2 CONTINUE
4 PRIME (PINDEX) = I
PINDEX = PINDEX + 1
1 CONTINUE

DO 3 I =1, PINDEX-1
PRINT*, PRIME(I)
3 CONTINUE
STOP
END

Note that PROGRAM PRIME3 employs two conditional Go TO's (i.e., GO TO 1
and co TO 4) to exit from the inner loop. Some programmers hold that the use of
the Go To is justified to exit from a nest of loops while executing an inner loop or to
start the next iteration of an outer loop from within an inner loop. It may be argued
that, in such cases, a program written with the Go TO is easier to comprehend than
one without it. Many advocates of structured programming, on the other hand, argue
against the use of Go TO's unless such usage is absolutely necessary. PROGRAM
PRIME4 is an implementation of exactly the same algorithm used in PROGRAM
PRIMEZR, but it avoids the use of GO TO's.

PROGRAM PRIME4

C***************************************************************************

C Determines and displays prime numbers up to the user-entered value N
C******~k*******‘k‘k***'k*******************************************************
IMPLICIT NONE
LOGICAL PRIME
INTEGER I, J, N, PINDEX, PRIMES(100)
PRINT*, 'Enter N: '

READ*, N
PRINT*, 'Prime numbers up te', N, ':'
PRINT*, ' '
C
C Store the first two primes
PRIMES (1) = 2
PRIMES (2) = 3
C
c PINDEX is the next free slot in the PRIMES array
PINDEX = 3
c
c Test odd integer I for divisibility by primes less than or equal to the
c square root of I. I is prime if and onply if it is not divisible by any
c such integer.
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DO1I=5, N, 2

PRIME = .TRUE.

J=1

DO WHILE (PRIMES(J).LE.I/PRIMES (J) .AND. PRIME)
IF{MOD(I,PRIMES(J)) .EQ. 0) PRIME = .FALSE.
J=J+1

END DO

IF (PRIME) THEN
PRIMES (PINDEX) = I
PINDEX = PINDEX + 1

ENDIF

1 CONTINUE

o] Print the results
DO 3 I = 1, PINDEX-1
PRINT*, PRIMES(I)
3 CONTINUE
STOP
END

Exercise:

9. Prime numbers can also be generated by an algorithm called the Sieve of Erastosthenes.
The algorithm is presented below:

Step 1: Define an array of integers P. Set all elements Pjto 0,i=2, N.

Step 2: Setito 2.

Step 3: If i is greater than N, the algorithm terminates.

Step 4: If Pj is zero, than i is prime.

Step 5: For all positive values of j such that ixj is less than or equal to N, set Pix;j to 1.
Step 6: Add 1 to i and go to step 3.

Implement this algorithm in FORTRAN. (Do not worry about why the algorithm works. You
should, however, be abie to convert the steps given above to a FORTRAN program. Do not
look at the “solution” given below until you finish and test your program.)

Solution:

PROGRAM PRIMES

c**************************************'k************************************

c Determines and displays prime numbers up to user~entered value N
C***************************'k**k*********************************************

IMPLICIT NONE

INTEGER I, J, N, P(2:100)

PRINT*, 'Enter N: '

READ*, N

PRINT*, 'Prime numbers up to', N, ':'

PRINT*, ' !
c
c sieve of Erastosthenes Algorithm

DO11I=2,N

P(I) =0
1 CONTINUE
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DO 2 I =2, N
IF{P(I).EQ.0) PRINT*, I
DO 3 J =1, N/I
P(I*J) = 1
3 CONTINUE
2 CONTINUE
END

3.10 Implied DO Loops

in the example programs given so far, "explicit" DO loops were employed to read in
and print out arrays. When using explicit Do loops for printing and reading, a distinct
line of output is displayed for each execution of a PRINT statement, and a distinct
line of input is required for each execution of a READ. This can sometimes be
cumbersome and inconvenient. A usually better approach is the use of implied DO
loops. For example, the explicit DO loop

DO 1 I=1, N

READ*, A(I)
1 CONTINUE

can be replaced by the implied DO loop

READ*, (A(I), I = 1, N)

When this loop is executed, as many lines as needed will be read until all of the
array elements (from A (1) to A (N)) are filled. As many values as desired can be
entered on a single line (i.e., without pressing the ENTER key), since a separate line
is not required for each data item. The general form of an implied DO loop is as

follows:

PRINT*, (output list, Icv = inv, endyv, step)
READ*, (input list, Icv = inv, endv, step)

where lcv is the loop-control variable which must be of type integer, the loop
parameters inv, endv, and step denote initial value, end value, and step size
(increment), respectively, for the loop-control variable. When step is omitted, it is
assumed to be +1. For example,

READ*, " (A(I), B(I), I =1, 5, 2)

has the same affect as the statement

READ*, A(1l), B(l), A(3), B(3), A(5), B(3)
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In general, the variables in an implied Do loop do not have to be subscripted.
It is also possible to PRINT constants using an implied Do loop. It is permissible, for

example, to use a statement like

PRINT*, ('-', I =1, 80)

instead of the clumsy statement

Example 3.19:

Consider the problem of reading and printing the elements of an array. One way to
accomplish this is to use explicit DO loops to read and print the array elements one by one.
To see how this approach works, type and run the following program:

PROGRAM EXPLDO
C*********************************************-k*****************************
C Program shows how the elements of an array (N data values)

c are read in and printed out using "explicit" DO loops.
C******************************-k*************************-k******************

IMPLICIT NONE

INTEGER N, I

REAT, A(10)

PRINT*, 'Enter the number of values: '

READ*, N

DO 1 I =1, N

PRINT*, 'Enter value', I, ': '

READ*, A(I)
1 CONTINUE
DO 2 I =1, N
PRINT*, 'I =', I, ' A{I) =', A{I)
2 CONTINUE

END

The following are two sample execution outputs of this program:

Enter the number of values: 3

Enter value 1: 1.5

Enter wvalue 2: 3.6

Enter wvalue 3: 2.3

I = 1 A(I) = 1.50000
I = 2 A(I) = 3.60000
I = 3 A(I) = 2.30000
Enter the number of values: 4

Enter value 1: 4

Enter value : 2: 2 7
Enter value 3: 8

Enter value 4: 7

I = 1 A(I) = 4.,00000
I = 2 A(I) = 2.00000
I= 3 A(I) 8.00000
I = 4 A(I) = 7.00000
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Notice that, in the second run, two data values (2 and 7) were typed on the same line before

the ENTER key was pressed. The second value, however, is ignored by the program because
the READ statement

READ*, A(I)
expects and reads exactly one data value. Furthermore, when the READ statement is
executed again in the next iteration of the Do loop, the value in the next line (i.e. 8) is read,
and 7 is completely skipped. As a result, after typing the four values 4, 2, 7, and 8, the
program still prompts us o enter one more value:

Enter the number of values: 4

Enter value 1: 4
Enter value 2 2 7
Enter value 3: 8
Enter value 4

We next type 7 to complete the array. (This will be acceptable only if the order of the array
elements is immaterial.) The use of implied DO loops to read and print arrays is illustrated
below. Run this program also with a variety of input data:

PROGRAM IMPLDO
C****************************’k**********************************************
C Program shows how the elements of an array (N data values)

C are read in and printed out using implied DO loops.
c************************k*‘;\-***************‘k********************************

IMPLICIT NONE

INTEGER N, I

REAL A(10)

PRINT*, 'Enter the number of values: '

READ*, N

PRINT*, 'Enter', N, ' values: '

READ*, (A(I), I = 1,N)

PRINT*, 'The values you entered are: '

PRINT*, {A(I), I = 1,N)

END

Two sample outputs are provided below:

Enter the number of values: 3

Enter 3 values: 1 4 2
The values you entered are:
1.00000 4.00000 2.00000

Enter the number of values: 4

Enter 4 values: -2.4 4
1

3

The values you entered are:

-2.40000 4.00000 1.00000 3.00000

In the second run, the first two values were typed on the first line of input, then ENTER was
pressed. The third and the fourth data values were entered on separate lines. This is quite
acceptable when an implied Do loop is used.
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3.11 Program Parameters

FORTRAN has a special feature, the PARAMETER statement, which is helpful in
writing programs that are more readable and easier to modify. Consider, for
example, a program that contains the following declarations:

REAL A(10), B(10), C(10), D(10)
INTEGER NUM(10), INDEX(10)

and also program segments such as

PRINT*, 'Enter the number of array elements: '

READ*, N

IF(N.GT.10) THEN
PRINT*, 'Array size N is too large. Execution terminated.’
STOP

ENDIF

READ*, (A(I), I = 1,N)

If a certain application required handling arrays with a dimension higher than
10, it would be necessary to modify this program by changing the number 10 at each

and every place it is used as the maximum array size. Alternatively, using the
PARAMETER statement, the above program segments can be written as follows:

INTEGER NMAX
PARAMETER (NMAX = 10)

REAL A (NMAX), B(NMAX), C(NMAX), D (NMAX)
INTEGER NUM(NMAX), INDEX (NMAX)

PRINT*, 'Enter the number of array elements: '

READ*, N

IF(N.GT.NMAX) THEN
PRINT*, 'Array size N 1s too large. Execution terminated.'
STOP

ENDIF

READ*, (A(I), I = 1,N)

With this approach, it would be sufficient to change the value of NMAX in the
PARAMETER statement to handle arrays of different sizes. The general format of the
PARAMETER statement is as follows:

PARAMETER (pary = const,;, par, = consty, ...)

This statement associates with each symbolic name par;with a constant value const,.
Each such symbolic name can then be used to represent the associated value
elsewhere in the program. Such a symbolic name is referred to as a parameter or a
named constant. The type of each parameter must be declared before it appears in



115

a PARAMETER statement. PARAMETER statements must be placed before all

executable statements in the program. A symbolic name used as a parameter cannot
be redefined with an assignment statement, a READ statement, or another
PARAMETER statement. (For example, the value of the parameter NMAX discussed

above cannot be changed in the program.) A parameter cannot be used before the
PARAMETER statement that defines it.

3.12 Multidimensional Arrays

So far we have dealt only with one-dimensional (linear) arrays. These arrays are
employed to represent variables with a single subscript. FORTRAN also allows the
use of two or three (and higher) dimensional arrays which are useful for representing
and manipulating variables with multiple subscripts.

Consider, for example, the problem of adding two MxN matrices A and B.
(Remember that a matrix is a rectangular "table” or "collection" of numbers. An MxN
matrix contains M rows and N columns.) We denote the number in the i-th row and
the j-th column of A by ajj. Let C be defined as the sum of A and B. Then, by the

definition of matrix addition, we have cjj = ajj + bjj. Assuming that the matrices we will
deal with can have at most 10 columns and 10 rows, we would place the following
array declarations at the top of our program to allocate space for the matrices A, B,

and C in the computer memory:
REAL A(10,10), B(10,10), C(10,10)

To calculate the elements of the sum matrix C, from given matrices A and B, we can
then include the following segment in our program:

Do 1 N

I=1,
DO 2 J =1, M
C(I,J) = A(I,J) + B(I,J)
2 CONTINUE
1 CONTINUE

An n-dimensional array declaration, in its most general form, has the following
form:

type name(low 1:high1, low2:high2,...,lown:highp)

where fype may be any of the FORTRAN data types, i.e. INTEGER, REAL,
CHARACTER, LOGICAL, etc., and Jowk and highy denote the smallest and largest
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subscript values for dimension k of the array indicated by name. Clearly, lowk has to
be less than or equal to highk, and the number of elements of the array is

(high1 - low1 + 1)x(high2 - low2 + 1)x...x(highp - lowpn + 1)
A simpler and commonly used form of n-dimensional array declaration is as follows:

type name(size1,size?,...,sizen )

where sizey has to be a positive integer. When an array is declared in this way, the

smallest subscript for each dimension is automatically assumed to be +1. The largest

allowable subscript for dimension k is then equal to sizek.

Example 3.20:

Let A and B be real matrices with dimensions NaxMa and NgxMg, respectively. The product
AB is defined if Ma = Ng and is an NayxMg matrix, say C, which is calculated as follows:

Cj= 2k (ai big)

where the summation is from k=1 to k=Mp (=Ng). Similarly, the product BA, call it D, is well-
defined when Mg = Nj and is an NgxMpa matrix:

dij= 2 (b ay)

where the sum is taken from k=1 to k=Mg (=Np). Given two user-entered matrices A and B,
the following program computes and prints the products AB and BA, if they are defined.

PROGRAM MATMUL
C***************************************************************************
c Program to carry out matrix multiplication:

C Matrices A and B are read in interactively, product matrices
c C=ADBand D =B A, if they exist, are computed and printed out.
C*******************************************7\'********************‘k**********

IMPLICIT NONE

INTEGER NMAX

PARAMETER (NMAX = 10)

REAL A (NMAX,NMAX), B(NMAX,NMAX), C(NMAX,NMAX), D(NMAX, NMAX)

INTEGER I, J, K, NA, NB, MA, MB

LOGICAL CEXIST, DEXIST

PRINT*, 'Program will calculate C = AB and D = BA.'

PRINT*, 'Enter the dimensions of A: '

READ*, NA, MA

IF(NA.GT.NMAX .OR. MA.GT.NMAX)THEN

PRINT*, 'A is too large. Execution terminated.’
STOP
ENDIF
DO 1 I =1, NA
PRINT*, 'Enter row number', I, ': '
READ*, {(A(I, J), J = 1, MA)
1 CONTINUE
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PRINT*, 'Enter the dimensions of B: !
READ*, NB, MB
IF(NB.GT.NMAX .OR. MB.GT.NMAX)THEN
PRINT*, 'B is too large. Execution terminated.'
STOP
ENDIF
DO 2 I =1, NB
PRINT#*, 'Enter row number', I, ': '
READ*, (B(I, J), J = 1, MB)
2 CONTINUE
C
C Calculate the elements of the product matrix C
IF(NB.EQ.MA)THEN
CEXIST = .TRUE.
DO 3 I =1, NA
DO 4 J = 1, MB
c(1,J) = 0.0
DO 5 K =1, MA
C(I,J) = C(I,J) + A(I,K)*B(K,J)
5 CONTINUE
CONTINUE
3 CONTINUE
ELSE
PRINT*, 'The product AB is not defined. '
CEXIST = .FALSE.
ENDIF
C Calculate the elements of the product matrix D
IF (NA.EQ.MB)THEN
DEXIST = .TRUE.
DO 6 I = 1, NB
DO 7 J =1, MA
D(I,J) = 0.0
DO 8 K =1, MB
D(I,J) = D(I,J) + B(I,K)*A(K,J)
8 CONTINUE
7 CONTINUE
6 CONTINUE
ELSE
PRINT*, 'The product BA is not defined. '
DEXIST = .FALSE.
ENDIF
C Print results
IF (CEXIST)THEN
PRINT*, ' !
PRINT*, 'Product AB:'
DO 9 I =1, NA
PRINT*, (C(I, J), J = 1, MB)
9 CONTINUE
ENDIF
IF (DEXIST) THEN
PRINT*, ' !
PRINT*, 'Product BA:'
DO 10 I = 1, NB
PRINT*, (D(I, J), J = 1, MA)
10 CONTINUE
ENDIF
END

1-%
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Here is a sample run of this program:

Program will calculate C = AR and D = BA.
Enter the dimensions of A: 2
Enter row number 1
Enter row number 2
Enter the dimensions of B: 2 2
Enter row number 1
Enter row number 2

Product AB:
1.00000 5.00000
2.00000 16.0000

Product BA:
11.0000 15.0000
4.00000 6.00000

3.13 The DATA Statement

Most programs require certain input data (which are entered either using the
keyboard or read in from a data file), carry out calculations (during which
intermediate data may be generated), and produce output (which are normally
displayed on the computer screen or written into an output file). Input data may
change from run to run, and accordingly the outputs obtained during different runs
may also be different. Occasionally we need to define certain data values, which are
not expected to change from one execution of the program to the next, at the time
we write the program. It is unnecessary to use READ statements to load such data

into memory. The DATA statement is usually employed to define these data values.

The general form is

DATA List of variables /List of constants/

The pDATA statement is a non-executable statement and should be placed
after the type declaration statements. It is common practice to place the DaTa
statements before all executable statements. The following are some valid examples
of the DATA statement:

DATA A /1.0/
DATA X, Y /3.5, 200./, FLAG /.TRUE./
DATA NAME (1), NAME(2) /'Ahmet', 'Nazan'/

The use of the above DATA statements has the same effect as the execution of the

following assignment statements:

A=1.0
X = 3.5
Y = 200.
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FLAG = .TRUE.
NAME (1) = 'Ahmet'’
NAME (2) = 'Nazan'

The difference is, the DATA statement assigns values to variables during compilation,
i.e. before execution of the program. One consequence of this is that, as a result of
using DATA statements (instead of the executable assignment statements), the
execution time of the program is reduced.

Recall that the PARAMETER statement, which is also a non-executable
statement, can be used to associate constant values with symbolic names. For

example, the statement

PARAMETER(PTI = 3.14159)

associates the symbolic name p1 with the value 3.14159. Here PI is nof a variable
and cannot be assigned a value in the program. The DATA statement, on the other
hand, is employed to assign values to variables which, if desired, can be changed
later in the program. For example, the DATA statement is frequently employed to

initialize arrays. Let A be an array declared as

REAL A(10)

then the (initial) values 11.0, -5.0, 3.5, 0.0, 1.0 can be assigned to A (1), A(2),

A(3),A(4),and A (5), respectively, as follows:

DATA (A(I), I=1,5) /11.0, -5.0, 3.5, 0.0, 1.0/

If all of the elements of A are to be initialized to zero, then any one of the

following statements can be used:

DATA (A(I),I=1,10)/0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0/
DATA (A(I), I=1,10) /10*0.0/

DATA A /0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0/
DATA A /10*0.0/

It should be noted that there are as many constants as there are memory cells being
initialized. To repeat a constant n times, the notation n*c is used (where ¢ represents

the constant).
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Example 3.21:

Consider a telephone survey carried out to discover how viewers feel about a particular
television show. Each respondent is asked to rate the show on a scale from 1 to 5. The
following FORTRAN program can be used to analyze the resulis of the survey. The program
determines how many people rated the show a 1, how many a 2, and so on up to 5. Note that
the maximum rating point is specified using the parameter MAXRAT which can be changed if
desired. If the rating scale is 1 to 10, for example, MAXRAT will be 10.

Type and run the program. While the program could be used to analyze the results of,
say, 5000 responses, use small test cases (e.g. 10 to 20 responses) to evaluate the program.

PROGRAM RATING

Crrrhhdhdrhhbdhhddhdrdkhrhhhddhhrhbhhhhhhdrbhhkbrhdhhhhhhdrbhhhrrdhrbrbhhrhhrrrrr

C Program to analyze ratings of a TV show

C N : number of responses from viewers
C MAXRAT : maximum rating point
C COUNTR(I) : # of people rating the show an I (I=1,MAXRAT)

C*********‘k*****‘k**********'k**********‘k**********************************7\—**

IMPLICIT NONE
INTEGER MAXRAT
PARAMETER (MAXRAT=5)
INTEGER COUNTR{MAXRAT), I, N, RESPON
DATA COUNTR /MAXRAT*0/
PRINT*, 'Enter number of responses:
READ*, N
PRINT*, 'Enter your responses: '
I=1
DO WHILE(I.LE.N)
READ*, RESPON
IF(RESPON.LT.1 .OR. RESPON.GT.MAXRAT)THEN
PRINT*, 'Bad response:', RESPON

1

ELSE
COUNTR (RESPON) = COUNTR (RESPON) + 1
I=I+1
ENDIF
END DO
PRINT*, 'Rating Number of Responses'
PRINT*, '————— oo '

DO 1 I = 1, MAXRAT
PRINT '(1X,I3,7X,I4)', I, COUNTR{I)
1 CONTINUE
END

Example 3.22:

Consider the factorial function n!/ = (n)(n-1)(n-2)...(1). The following straightforward function
can be employed to calculate the factorial of a given integer n. Note that the function is

typed as REAL to avoid integer overflow when n is large.

REAL FUNCTION FACT (N)
IMPLICIT NONE
INTEGER N, I

FACT = 1.0
DO 10 I =2, N
FACT = FACT*I
10 CONTINUE
RETURN

END
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Suppose, however, that this function will be called a very large number of times in a
program, and the factorials of some or all of the smaller integers (say, those between 0 and
10) will be needed repeatedly. With the use of the above function, the mentioned factorials
would have to be re-calculated every time they are needed. A more efficient approach (one
that may decrease execution time) is to set up a table that holds the factorials that the calling
program is likely to need frequently. Here is how this can be done using the DATA statement’:

REAL FUNCTION FACT (N)

IMPLICIT NONE

INTEGER N, I

REAL TABLE (0:10)

DATA TABLE /1,1,2,6,24,120,
1 720,5040, 40320,
2 362880,3628800/

IF(N.LE.10) THEN

FACT=TABLE (N)
RETURN

ENDIF

FACT=TABLE (10)

DO 10 I = 11, N

FACT = FACT*I
10 CONTINUE
RETURN
END

For n < 10, n! is simply looked up in the table, saving (n-71) multiplications. If n>10, n! is
calculated as 10/(11)(12)...(n-1)(n), saving 9 multiplications. An alternative appreach (using
the ENTRY statement) is given in Example 4.15.

Note also how the RETURN statement is utilized to end the execution of the
subprogram before reaching the END statement. (Remember that the RETURN statement just
before the END statement is optional and could be omitted. The first RETURN statement,
however, is essential for the function to work correctly.)

Exercises:

10. Example 3.21 allows a variable number of responses (N) which is entered by the user.
Modify the program so that the user does not have to count the number of responses in the
list. Set up the program such that the value 999 can be typed in by the user to indicate that
the last response has been entered.

11. An algorithm for calculating square roots is as follows. If X, is a guess for the value of the
square root of a number C, then an improved value is X, , where

Xnew = (Xold + C/Xold)/ 2

The idea is to read a number C whose square root is to be computed, guess the square root
Xoa (you may use (C+1)/2 as the initial guess), and improve the guess with the above
equation. If the improved guess Xaew is not accurate enough (i.e. if | (Xnew)~C| is not small,
e.g. less than 109, the value is again improved by a further application of the algorithm. This
process is continued until the computed value for Xpey is sufficiently accurate or until the
program exceeds its maximum cycle limit NMAX. The maximum number of iterations NMAX is
supplied by the programmer. If the condition |(X.ew)-C| < 10° is satisfied before the
maximum number of iterations is reached, the root search is successful. Write a program that
will carry out these calculations.

3 Kruger, Efficient FORTRAN Programming, p.24.
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12. An algorithm to compute the inverse of a number C without using any division is®

Xnew = Xold (2' Cxoid)

provided that the initial guess for the inverse (xqg) is chosen such that (2- Cxyg) is positive.
Write a program that will

0]
(i)
(iii)
@iv)
\%)

(vi)

Prompt and read a positive number C.

Specify an initial guess x for the inverse of C.

Check that (2-Cx) > 0. If not, reduce x and try again.

Prompt and read the maximum number of iterations NMAX.

Carry out successive iterations to improve the guess by the given algorithm. The test
for success is |1-Cx| < 10°°.

if successful, print the number C and its estimated inverse; if not successful, print a
diagnostic (a message explaining what happened).

® This exercise has been adapted from FORTRAN 77 and Numerical Methods for Engineers by Borse.



