ENVE 2061 BASIC FLUID MECHANICS

 Fluid Statics:
Pressure At a Point

Basic Equation for Pressure Field
 Change of Pressure in Static Liquid

Assoc. Prof. Neslihan Semerci

Lecture Notes from

- A Brief Introduction to Fluid Mechanics, $6^{\text {th }}$ Edition, Donald F. Young, Bruce R. Munson, Theodore H. Okiishi, Wade W. Huebsch

Learning Objectives:

- determine the pressure at various locations in a fluid at rest.

Pressure at a point

Question: how the pressure at a point varies with the orientation of the plane passing through the point?

$$
\begin{aligned}
& \sum F_{y}= \\
& p_{y} \delta x \delta z-p_{s} \delta x \delta s \sin \theta=\rho \frac{\delta x \delta y \delta z}{2} a_{y} \\
& \sum F_{z}=p_{z} \delta x \delta y-p_{s} \delta x \delta s \cos \theta-\gamma \frac{\delta x \delta y \delta z}{2}=\rho \frac{\delta x \delta y \delta z}{2} a_{z}
\end{aligned}
$$

Volume

Pressure at a point

Since we are considering the situation in which there are no shearing stresses, the only external forces acting on the wedge are due to the pressure and gravity.

Shearing stresses is zero; as the fluid mass moves as a rigid body; that is, there is no relative motion between adjacent elements.

$$
\begin{aligned}
& \sum F_{y}=\quad p_{y} \delta x \delta z-p_{s} \delta x \delta s \sin \theta=\rho \frac{\delta x \delta y \delta z}{2} a_{y} \\
& \sum F_{z}=p_{z} \delta x \delta y-p_{s} \delta x \delta s \cos \theta-\gamma \frac{\delta x \delta y \delta z}{2}=\rho \frac{\delta x \delta y \delta z}{2} a_{z}
\end{aligned}
$$

The forces in the x direction are not shown, and the z axis is taken as the vertical axis, so gravity acts in the negative z direction.

Pressure at a point

Apply Newton's second law; F=m.a

$$
\begin{aligned}
& \sum F_{y}=\quad p_{y} \delta x \delta z-p_{s} \delta x \delta s \sin \theta=\rho \frac{\delta x \delta y \delta z}{2} a_{y} \\
& \sum F_{z}=p_{z} \delta x \delta y-p_{s} \delta x \delta s \cos \theta-\gamma \frac{\delta x \delta y \delta z}{2}=\rho \frac{\delta x \delta y \delta z}{2} a_{z}
\end{aligned}
$$

Pressure at a point

Apply Newton's second law; F=m.a

$$
\begin{aligned}
& \sum F_{y}=\quad p_{y} \delta x \delta z-p_{s} \delta x \delta s \sin \theta=\rho \frac{\delta x \delta y \delta z}{2} a_{y} \\
& \sum F_{z}=p_{z} \delta x \delta y-p_{s} \delta x \delta s \cos \theta-\gamma \frac{\delta x \delta y \delta z}{2}=\rho \frac{\delta x \delta y \delta z}{2} a_{z}
\end{aligned}
$$

Pressure at a point

Apply Newton's second law; F=m.a

$$
\begin{aligned}
\sum F_{y} & =p_{y} \delta x \delta z-p_{s} \delta x \delta s \sin \theta=\rho \frac{\delta x \delta y \delta z}{2} a_{y} \\
\sum F_{z} & =p_{z} \delta x \delta y-p_{s} \delta x \delta s \cos \theta-\gamma \frac{\delta x \delta y \delta z}{2}=\rho \frac{\delta x \delta y \delta z}{2} a_{z}
\end{aligned}
$$

- Average pressures on the faces: ps, py, and pz
- Fluid Specific Weight: γ
- Density: ρ
- Accelerations: ay and az

Note: that a pressure must be multiplied by an appropriate area to obtain the force due to the pressure. It follows from the geometry that

$$
\delta y=\delta s \cos \theta \quad \delta z=\delta s \sin \theta
$$

Since we are really interested in what is happening at a point, we take the limit as δx, δy, and δz approach zero (while maintaining the angle θ), and it follows that

Pressure at a point

$$
\begin{gathered}
p_{y}-p_{s}=\rho a_{y} \frac{\delta y}{2} \\
p_{z}-p_{s}=\left(\rho a_{z}+\gamma\right) \frac{\delta z}{2}
\end{gathered}
$$

Since we are really interested in what is happening at a point, we take the limit as $\delta x, \delta y$, and δz approach zero (while maintaining the angle θ), and it follows that

$$
\begin{gathered}
p_{y}=p_{s} \quad p_{z}=p_{s} \\
\mathrm{ps}=\mathrm{py}=\mathrm{pz}
\end{gathered}
$$

Conclusion: pressure at a point in a fluid at rest, or in motion, is independent of direction as long as there are no shearing stresses present. Pascal's law

Pascal's law, named in honor of Blaise Pascal (1623-1662), a French mathematician who made important contributions in the field of hydrostatics.

BASIC EQUATION FOR PRESSURE FIELD

$2^{\text {nd }}$ Question: how does the pressure in a fluid in which there are no shearing stresses vary from point to point?
consider a small rectangular element of fluid removed from some arbitrary position within the mass of fluid of interest

There are two types of forces acting on this element: surface forces due to the pressure and a body force equal to the weight of the element.

Other possible types of body forces, such as those due to magnetic fields, will not be considered.

BASIC EQUATION FOR PRESSURE FIELD

$2^{\text {nd }}$ Question: how does the pressure in a fluid in which there are no shearing stresses vary from point to point?

Surface and body forces acting on small fluid element.

The resultant surface force in the y direction is

$$
\delta F_{y}=\left(p-\frac{\partial p}{\partial y} \frac{\delta y}{2}\right) \delta x \delta z-\left(p+\frac{\partial p}{\partial y} \frac{\delta y}{2}\right) \delta x \delta z
$$

$$
\delta F_{y}=-\frac{\partial p}{\partial y} \delta x \delta y \delta z
$$

The resultant surface forces in the x and direction are

$$
\delta F_{x}=-\frac{\partial p}{\partial x} \delta x \delta y \delta z \quad \delta F_{z}=-\frac{\partial p}{\partial z} \delta x \delta y \delta z
$$

The resultant surface force acting on the element due to pressure can be expressed in vector form as

$$
\delta \mathbf{F}_{s}=\delta F_{x} \hat{\mathbf{i}}+\delta F_{y} \hat{\mathbf{j}}+\delta F_{z} \widehat{\mathbf{k}}
$$

$\delta \mathbf{F}_{s}=-\left(\frac{\partial p}{\partial x} \hat{\mathbf{i}}+\frac{\partial p}{\partial y} \hat{\mathbf{j}}+\frac{\partial p}{\partial z} \widehat{\mathbf{k}}\right) \delta x \delta y \delta z$
$\hat{\mathbf{i}}, \hat{\mathbf{j}}$, and $\hat{\mathbf{k}}$ are the unit vectors along the coordinate axes

$$
\frac{\partial p}{\partial x} \hat{\mathbf{i}}+\frac{\partial p}{\partial y} \hat{\mathbf{j}}+\frac{\partial p}{\partial z} \widehat{\mathbf{k}}=\nabla p
$$

$$
\nabla()=\frac{\partial()}{\partial x} \hat{\mathbf{i}}+\frac{\partial()}{\partial y} \hat{\mathbf{j}}+\frac{\partial()}{\partial z} \widehat{\mathbf{k}}
$$

BASIC EQUATION FOR PRESSURE FIELD

$$
\begin{aligned}
& \delta \mathbf{F}_{s}=\delta F_{x} \hat{\mathbf{i}}+\delta F_{y} \hat{\mathbf{j}}+\delta F_{z} \widehat{\mathbf{k}} \\
& \left(\frac{\partial p}{\partial x} \hat{\mathbf{i}}+\frac{\partial p}{\partial y} \hat{\mathbf{j}}+\frac{\partial p}{\partial z} \widehat{\mathbf{k}}\right) \delta x \delta \\
& \frac{\delta \mathbf{F}_{s}}{\delta x \delta y \delta z}=-\nabla p
\end{aligned}
$$

$$
\delta F_{x}=-\frac{\partial p}{\partial x} \delta x \delta y \delta z \delta F_{z}=-\frac{\partial p}{\partial z} \delta x \delta y \delta z
$$

$$
\delta F_{y}=-\frac{\partial p}{\partial y} \delta x \delta y \delta z
$$

The resultant surface force acting on a small fluid element depends only on the pressure gradient if there are no shearing stresses present.
Since the z axis is vertical, the weight of the element is
the negative sign indicates that the

$$
-\delta \mathscr{W} \widehat{\mathbf{k}}=-\gamma \delta x \delta y \delta z \hat{\mathbf{k}} \quad \longleftarrow \quad \begin{aligned}
& \text { force due to the weight is do } \\
& \text { (in the negative } \mathrm{z} \text { direction). }
\end{aligned}
$$

BASIC EQUATION FOR PRESSURE FIELD

Newton's second law, applied to the fluid element

$$
\sum \delta \mathbf{F}=\delta m \mathbf{a}
$$

$\Sigma \delta$ F represents the resultant force acting on the element, a is the acceleration of the element, and δm is the element mass, which can be written as $\rho \delta x \delta y \delta z$. It follows that

$$
\Gamma \delta \mathbf{F}=\delta \mathbf{F}_{o}-\delta \mathscr{W} \widehat{\mathbf{k}}=\delta m \mathbf{a}
$$

$$
-\nabla p-\gamma \widehat{\mathbf{k}}=\rho \mathbf{a}
$$

general equation of motion for a fluid in which there are no shearing stresses

For a fluid at rest, $\mathbf{a}=0 \quad \quad \nabla p+\gamma \hat{\mathbf{k}}=0 \quad \nabla p=-\gamma \hat{\mathbf{k}}$

$$
\frac{\partial p}{\partial x} \hat{\mathbf{i}}+\frac{\partial p}{\partial y} \hat{\mathbf{j}}+\frac{\partial p}{\partial z} \hat{\mathbf{k}}=\nabla p=-\gamma \hat{\mathbf{k}}
$$

$$
\frac{\partial p}{\partial x}=0 \quad \frac{\partial p}{\partial y}=0 \quad \frac{\partial p}{\partial z}=-\gamma
$$

BASIC EQUATION FOR PRESSURE FIELD

$\underline{\partial p}=0 \quad \underline{\partial p}=0 \quad$ we move from point to point in a horizontal plane (any plane parallel to the $x-y$ plane), the pressure does not change.

$$
\frac{\partial p}{\partial z}=-\gamma \quad \frac{d p}{d z}=-\gamma
$$

can be written as the ordinary differential equation, since p depends only on z,

For liquids or gases at rest, the pressure gradient in the vertical direction at any point in a fluid depends only on the specific weight of the fluid at that point.

CHANGE OF PRESSURE: INCOMPRESSIBLE FLUIDS

$$
\frac{d p}{d z}=-\gamma \quad \gamma=\rho g
$$

most engineering applications the variation in g is negligible

In general, a fluid with constant density is called an incompressible fluid.

$$
\int_{p_{1}}^{p_{2}} d p=-\gamma \int_{z_{1}}^{z_{2}} d z
$$

h is called the pressure head and is interpreted as the height of a column of fluid of specific weight φ required to give a pressure difference p1-p2.
h is the distance, $z_{2}-z_{1}$, which is the depth of fluid measured downward from the location of P_{2}
the pressure difference between two points can be specified by the $p_{1}-p_{2}=\gamma h \quad$ distance h,

CHANGE OF PRESSURE: INCOMPRESSIBLE FLUIDS

h is called the pressure head and is interpreted as the height of a column of fluid of specific weight γ required to give a pressure difference p1-p2.

Pressure difference $=69 \mathrm{kPa}$
It can be expressed in terms of pressure head as 7 m of water $69 \mathrm{kPa}=9.81 \mathrm{kN} / \mathrm{m}^{3} \mathrm{x} 7 \mathrm{~m}$ or
$69 \mathrm{kPa}=133 \mathrm{kN} / \mathrm{m}^{3} \times 0.518 \mathrm{~m}$ (or 518 mm)
$\gamma_{\mathrm{Hg}}=133 \mathrm{kN} / \mathrm{m}^{3,} \gamma_{\text {water }}=9.81 \mathrm{kN} / \mathrm{m}^{3}$
a 7 m -tall column of water with a cross-sectional area of $6.5 \mathrm{~cm}^{2}$ weighs 4.5 kg .

CHANGE OF PRESSURE IN STATIC FLUIDS: INCOMPRESSIBLE FLUIDS

$$
\frac{d p}{d z}=-\gamma \quad \gamma=\rho g
$$

most engineering applications the variation in g is negligible

In general, a fluid with constant density is called an incompressible fluid.

$$
\begin{gathered}
\int_{p_{1}}^{p_{2}} d p=-\gamma \int_{z_{1}}^{z_{2}} d z \\
p_{2}-p_{1}=-\gamma\left(z_{2}-z_{1}\right) \\
p_{1}-p_{2}=\gamma\left(z_{2}-z_{1}\right) \\
\underbrace{}_{\mathrm{h}} \\
p_{1}-p_{2}=\gamma h
\end{gathered}
$$

CHANGE OF PRESSURE: COMPRESSIBLE FLUIDS

Gases such as air, oxygen, and nitrogen as being compressible fluids because the density of the gas can change significantly with modest changes in pressure and temperature.

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
\frac{d p}{d z}=-\gamma \\
\text { it is necessary to consider the possible variation in } \gamma \text { before the equation } \\
\text { can be integrated }
\end{array} \\
\begin{array}{l}
\text { Note: Specific weight of the gases so small } \\
\text { compared to liquids variation of pressure with } \\
\text { elevation change is negligible. }
\end{array} \\
\frac{d p}{d z}=-\frac{g p}{R T}
\end{array} \\
& \int_{p_{1}}^{p_{2}} \frac{d p}{p}=\ln \frac{p_{2}}{p_{1}}=-\frac{g}{R} \int_{z_{1}}^{z_{2}} \frac{d z}{T} \quad \begin{array}{l}
p_{2}=p_{1} \exp \left[-\frac{g\left(z_{2}-z_{1}\right)}{R T_{0}}\right]
\end{array} \\
& \begin{array}{l}
\text { Assumption: the temperature has a } \\
\text { and } R \text { are assumed to be constant over the } \\
\text { evation change from } \mathrm{z}_{1} \text { to } \mathrm{z}_{2} .
\end{array} \\
& \begin{array}{l}
\text { constant value } \mathrm{T}_{0} \text { over the range } \mathrm{z}_{1} \\
\text { to } \mathrm{z}_{2} \text { (isothermal conditions), }
\end{array}
\end{aligned}
$$

CHANGE OF PRESSURE: COMPRESSIBLE FLUIDS

In 2010, the world's tallest building, the Burj Khalifa skyscraper was completed and opened in the United Arab Emirates. The final height of the building, which had remained a secret until completion, is 828 m .

Find: a) Estimate the ratio of the pressure at the 828 m top of the building to the pressure at its base, assuming the air to be at a common temperature of $290^{\circ} \mathrm{K}$. b) Compare the pressure calculated in part (a) with that obtained by assuming the air to be incompressible with $\gamma=11.99 \mathrm{~N} / \mathrm{m} 3$ at 1 atm (abs) (values for air at standard sea level conditions).

$$
\begin{array}{rlrl}
\text { a } & & \text { b } & p_{2}=p_{1}-\gamma\left(z_{2}-z_{1}\right) \\
\begin{array}{rlr}
\frac{p_{2}}{p_{1}} & =\exp \left[-\frac{g\left(z_{2}-z_{1}\right)}{R T_{0}}\right] & \\
& =\exp \left\{-\frac{\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(828 \mathrm{~m})}{(8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})\left(290^{\circ} \mathrm{K}\right)}\right\} & \frac{p_{2}}{p_{1}}
\end{array} & =1-\frac{\gamma\left(z_{2}-z_{1}\right)}{p_{1}} \\
& =0.0344 & & =1-\frac{\left(11.99 \mathrm{~N} / \mathrm{m}^{3}\right)(828 \mathrm{~m})}{\left(101352 \mathrm{~N} / \mathrm{m}^{2}\right)}=0.902
\end{array}
$$

Note that there is little difference between the two results. Since the pressure difference between the bottom and top of the building is small, it follows that the variation in fluid density is small and, therefore, the compressible fluid and incompressible fluid analyses yield essentially the same result.

