Marmara University Department of Industrial Engineering ## IE3033 Operations Research I | GENERAL COURSE | II | NFORMATION | |--------------------------------|----|---| | Instructor | : | Gülfem Tuzkaya, PhD. | | Teaching
Assistant | : | Murat Bilsel, PhD. | | Campus Phone | : | 0216 777 3637 (G. Tuzkaya)-0216 777 3646 (M. Bilsel) | | Course Hours | : | Wednesday: 14:00-16:00, Thursday: 11.30-12.30(Lecture class) | | | | Monday:13:00-15.00(PS class) | | Office Hours | : | M5-213 - Tuesday: 14.00-16.00, Thursday: 14.00-16.00 | | | | M5-223 - Monday: 11.30-12.20, Wednesday: 13.00-14.00(I) | | E-mail | : | <pre>gulfem.tuzkaya@marmara.edu.tr</pre> | | | | <pre>murat.bilsel@marmara.edu.tr</pre> | | Web | : | https://avesis.marmara.edu.tr/gulfem.tuzkaya | | | | <pre>https://avesis.marmara.edu.tr/murat.bilsel</pre> | | Text Book | : | Taha H.A., Operations Research: An Introduction., 7th edition, | | | | Pearson Education Inc. | | Prerequisites | : | MATH2056 Linear Algebra | | | | IE2032 Introduction to Operations Research | | Reference
Books | : | Winston, W.L., Operations Research: Applications and Algorithms, Brooks/Cole, Cengage Learning Hillier, F.S. and Lieberman, G.J., Introduction to Operations Research, McGraw Hill International Edition. | | Aims of the Course | : | The aim of the course is to teach construction of mathematical models to the problems which may be encountered in real-life and solving/analyzing these models using appropriate operations research techniques. Thereby, intensification on the analytical thinking and also improving of skills on numerical analysis are purposed. | | Course
Learning
Outcomes | | Will be able to identify linear programming problems can be encountered in practice. Can approach to these problems within the framework of systems approach. Can develop linear mathematical models for problems Can solve linear mathematical models with known numerical methods When necessary can solve linear mathematical models by using optimization software packages. Can increase productivity by providing best resource utilization of limited resource systems. | | | Knows operation research is constantly evolving discipline and can improve himself according to this Can take part in operation research teams | |----------------|---| | ATTENDANCE and | • You should be in class on time. | | PARTICIPATION | • You must attend, at least, 70% of the lecture classes. | | | • You must attend, at least, 70% of the PS classes. | | EXAMS | • There will be four written exams: three midterms and one | | | final exam. | | GRADING | • Term Grade = 75%[Midterm] + 25%[Project] | | | • General Success Grade = 60%[Term Grade] + 40%[Final Exam] | | COURSE CONTENTS | | | | | |-----------------|---|--|--|--| | 1 | Introduction to Linear Programming (Recall) | | | | | | Optimization concept and linear programming | | | | | | Development of linear programming models | | | | | | Solving of linear programming models using graphical method | | | | | | Solving of linear programming models using the simplex method | | | | | | Artificial initial solution in the simplex algorithm: | | | | | | • M method | | | | | | • Two-phase method | | | | | | Special cases in the simplex method applications | | | | | 2 | Modeling with LINGO | | | | | 3 | Simplex Method Fundamentals | | | | | | Matrix definition of the standard linear programming problem | | | | | | • From extreme points to basic solutions | | | | | | Matrix form of generalized simplex tableau | | | | | | Revised Simplex Method | | | | | 4 | Duality and Sensitivity Analysis | | | | | | • Duality | | | | | | Dual simplex method | | | | | | Sensitivity Analysis | | | | | 5 | Goal Programming | | | | | | • Development of multi-objective models | | | | | | Solving of multi-objective models using goal programming | | | | | | o Weighted approach | | | | | | o Preemptive approach | | | | | 6 | Network Models | | | | | | Network definitions | | | | | | Notwork definitions | | | | | | Minimal spanning tree algorithm | | | | | | • Shortest-route problem | | | | | | Maximal flow model | | | | | | Minimum-cost capacitated flow problem | | | |