A predictive model for wafer probe burn phenomenon

Zafer B., Tunaboylu B.

APPLIED THERMAL ENGINEERING, vol.98, pp.610-616, 2016 (Journal Indexed in SCI) identifier identifier

  • Publication Type: Article / Article
  • Volume: 98
  • Publication Date: 2016
  • Doi Number: 10.1016/j.applthermaleng.2015.12.083
  • Page Numbers: pp.610-616
  • Keywords: Wafer probe, Probe burn, Numerical simulation, Joule heating, Vertical spring probe


Coupled thermal-electric computational mechanics techniques have been developed to understand the temperature distribution along a special design spring and cantilever probe body in order to model the probe burn phenomenon for conduction. The experimental maximum current carrying capability tests have been performed and compared with numerical solutions. Reasonably good agreement was observed between experimental and numerical results. A predictive model was developed as a design tool to enable faster probe design for cantilever or vertical types, assembly and test cycle for a wafer sort environment. In addition to the first mode, transient heat transfer between a heated spring probe and its close environment is investigated. A continuum finite volume simulation is used to analyze the heat flow within and from the resistively heated probe to its environment. Experimental results are conducted for spring probe with laminar air flow and without air flow. The numerical and experimental results are compared and high similarity is observed. (C) 2015 Elsevier Ltd. All rights reserved.