Wide-Gap Perovskite via Synergetic Surface Passivation and Its Application toward Efficient Stacked Tandem Photovoltaics


Huang T., Wang R., Nuryyeva S., Tan S., Xue J., Zhao Y., ...Daha Fazla

SMALL, cilt.18, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 18
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1002/smll.202103887
  • Dergi Adı: SMALL
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, EMBASE, INSPEC, MEDLINE, Metadex, Civil Engineering Abstracts
  • Anahtar Kelimeler: defect passivation, tandem structure, wide bandgap perovskites, SOLAR-CELLS, HIGH-PERFORMANCE
  • Marmara Üniversitesi Adresli: Evet

Özet

Superior bandgap tunability enables solution-processed halide perovskite a promising candidate for multi-junction photovoltaics (PVs). Particularly, optically coupling wide-gap perovskite by stacking with commercially available PVs such as silicon and CIGS (also known as 4-terminal tandem) simplifies the technology transfer process, and further advances the commercialization potential of perovskite technology. However, compared with matured PV materials and the phase-pure FAPbI(3), wide-gap perovskite still suffers from huge voltage deficits. Here, the authors take advantage of the synergetic effect behind a sequential fluoride and organic ammonium salt surface passivation strategy to control non-radiative energy losses, and obtained a 17.7% efficiency in infrared-transparent wide-gap perovskite solar cells (21.1% for opaque device), and achieved efficiencies of over 25% when stacked with commercial Si and CIGS products with original PCEs of 18-20% under a 4-terminal working condition.