Journal of Algebra and its Applications, vol.22, no.5, 2023 (SCI-Expanded)
© 2023 World Scientific Publishing Company.Recall that a commutative ring R is a locally integral domain if its localization RP is an integral domain for each prime ideal P of R. Our aim in this paper is to extend the notion of locally integral domains to modules. Let R be a commutative ring with a unity and M a nonzero unital R-module. M is called a locally torsion-free module if the localization MP of M is a torsion-free RP-module for each prime ideal P of R. In addition to giving many properties of locally torsion-free modules, we use them to characterize Baer modules, torsion free modules, and von Neumann regular rings.