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In 1961, T. A. Waldmann .

m
described serum hypoproteinemia 

associated with protein-losing enteropathy (PLE)1. The disease 
pathogenesis was unknown, and temporizing measures such 

as albumin infusions and immunoglobulin replacement therapy 

Q1 (IgRT) became the conventional therapies. In 2017, the discovery of 
‘CD55 deficiency with hyperactivation of complement, angiopathic 
thrombosis, and PLE’ (CHAPLE disease, MIM 226300) revealed 
that complement and innate immunity hyperactivation caused.

m
 by Q2

Broadly effective metabolic and immune recovery 
with C5 inhibition in CHAPLE disease
Ahmet Ozen! !1,2,3�ᅒ, Nurhan Kasap1,2,3, Ivan Vujkovic-Cvijin! !4, Richard Apps5, Foo Cheung5, 
Elif Karakoc-Aydiner1,2,3, Bilge Akkelle6, Sinan Sari7, Engin Tutar6, Figen Ozcay8, Dilara Kocacik Uygun9, 
Ali İslek10, Gamze Akgun2,3,11, Merve Selcuk12, Oya Balci Sezer8, Yu Zhang13,14, Gunsel Kutluk15, 
Erdem Topal16, Ersin Sayar17, Çigdem Celikel18, Roderick H. J. Houwen19, Aysen Bingol9, 
Ismail Ogulur1,2,3, Sevgi Bilgic Eltan2,3,11, Andrew L. Snow20, Camille Lake20, Giovanna Fantoni5, 
Camille Alba21, Brian Sellers5, Samuel D. Chauvin! !14,22, Clifton L. Dalgard23, Olivier Harari24, 
Yan G. Ni24, Ming-Dauh Wang24, Kishor Devalaraja-Narashimha24, Poorani Subramanian! !25, 
Rabia Ergelen26, Reha Artan27, Sukru Nail Guner28, Buket Dalgic7, John Tsang5, Yasmine Belkaid! !4,5, 
Deniz Ertem6, Safa Baris1,2,3 and Michael J. Lenardo! !14,22�ᅒ

Complement hyperactivation, angiopathic thrombosis and protein-losing enteropathy (CHAPLE disease) is a lethal disease 
caused by genetic loss of the complement regulatory protein CD55 leading to overactivation of complement and innate immu-
nity together with immunodeficiency due to immunoglobulin wasting in the intestine. We report in vivo human data accumu-
lated using the complement C5 inhibitor eculizumab for the medical treatment of patients with CHAPLE disease. We observed 
cessation of gastrointestinal pathology together with restoration of normal immunity and metabolism. We found that patients 
rapidly renormalized immunoglobulin concentrations and other serum proteins as revealed by aptamer profiling, re-established 
a healthy gut microbiome, discontinued immunoglobulin replacement and other treatments and exhibited catch-up growth. 
Thus, we show that blockade of C5 by eculizumab effectively re-establishes regulation of the innate immune complement sys-
tem to substantially reduce the pathophysiological manifestations of CD55 deficiency in humans.
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CD55 (also known as decay acceleration factor) gene deficiency can 
cause this disorder2,3. The cardinal features are severe PLE due to 
primary intestinal lymphangiectasia due to the inflammatory attack 
on intestinal lymphatic vessels by complement and innate immune 
overactivation2,4. CHAPLE leads to severe pathophysiology, includ-
ing diarrhea with protein-wasting, vomiting, abdominal pain and 
edema that cause a metabolic starvation state; recurrent infections 
due to hypogammaglobulinemia; and severe, often fatal, thrombo-
embolic complications1,2,4. The disease occurs globally but prevails 
in areas with high consanguinity, such as the Igdir region of east-
ern Turkey, where there is a high carrier frequency of CD55 loss 
of function alleles. Lethal CHAPLE disease, ‘tedirgin’ in the local 
language (meaning agitated), is prevalent there, and desperate par-
ents of affected children resort to folk remedies since conventional 
therapies do not improve or extend life. Thus, understanding the 
immune and metabolic derangements due to CD55 loss and how 
they change with complement interventions is critical..
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The complement system is a cascade of proteins coordinated 
with innate and adaptive immunity to destroy pathogens and clear 
immune complexes, apoptotic cells and debris5,6. Complement acti-
vation produces bioactive peptides—anaphylatoxins—that can alter 
both innate and adaptive immune responses and ultimately lead to 
the assembly of a membrane attack complex (MAC) that can lyse 
targets such as pathogens or cells7. Unwanted complement activa-
tion on host/self cells is regulated by the cell surface glycoproteins 
CD55 (decay acceleration factor), CD46 and CD59, which pro-
tect normal hematopoietic, endothelial and epithelial cells from 
complement-mediated damage8. In the gastrointestinal (GI) tract, 
lymph recirculation through lymph vessels called lacteals return 
serum proteins such as albumin and immunoglobulin to venous 
circulation. The genetic loss of CD55 induces local complement 
hyperactivation that deposits MAC on GI lymphatics, causing 
PLE2. Other severe diseases, such as paroxysmal nocturnal hemo-
globinuria (PNH) and atypical hemolytic uremic syndrome, result 
from the loss of complement inhibitors and uncontrolled comple-
ment activation on erythrocytes and kidney basal membrane cells, 
respectively2,9–12. Both conditions are treated effectively with the 
complement inhibitor eculizumab (Soliris). Eculizumab is a mono-
clonal antibody that binds to and inhibits the activation of C5, 
which occurs normally as consequence of the activation of the cen-
tral complement component C3. CD55 is a negative regulator of the 
C3 and C5 convertases that mediate cleavage activation of C3 and 
C5. We found that eculizumab successfully abrogated complement 
activation in vitro in T cells from patients with CHAPLE disease2.

Previous studies reported that eculizumab improved the condi-
tion of three members of a family with CD55 deficiency3,13. These 
promising results raised several important questions. Would eculi-
zumab have broad efficacy in families with different genetic back-
grounds and CD55 mutations? What physiological manifestations 
of disease would be alleviated, and would healthy immunity and 
metabolism be re-established. What are the drug pharmacokinetics  

Q3 Q4 Q5
Q6 Q7 Q8 Q9

and pharmacodynamics for complement control? Are there phar-
macogenomic variants that determine treatment efficacy and dos-
ing? Because PLE causes a starvation state, what are the specific 
metabolic effects of the disease and treatment? Multiplexed pro-
teomic platforms have identified new biomarkers and new disease 
mechanisms. For example, the investigation of inflammatory bowel 
disease using ‘slow off-rate modified aptamers’ (SOMAmers) 
revealed key serum protein changes independent of transcrip-
tome changes, suggesting this could help elucidate CHAPLE dis-
ease mechanisms14. Finally, despite ubiquitous CD55 expression 
in the body, the severe complement hyperactivation in CHAPLE 
disease affects mainly the GI tract. Could microbiome studies yield 
insights into GI pathogenesis?15,16 We therefore comprehensively 
investigated eculizumab as a medical treatment in patients with 
CHAPLE disease with different CD55 gene mutations.

Results
Natural history of a case series of CHAPLE disease. We evaluated 
16 patients with CHAPLE disease from 14 families diagnosed with 
recessive biallelic CD55 gene mutations causing decreased CD55 
expression and complement overactivation (Extended Data Fig. 1 
and Supplementary Fig. 1)2. All patients manifested severe PLE lead-
ing to hypoproteinemia, low immunoglobulin concentrations and 
recurrent infections, abdominal pain, nausea, vomiting, diarrhea, 
loss of appetite, weight loss and edema (Extended Data Figs. 1 and 
2 and Supplementary Information)2,3. Patients progressed to three 
life-threatening conditions: hypoproteinemia causing metabolic 
derangements, starvation and infections; debilitating GI inflamma-
tion, ulceration and obstruction; and severe, often fatal, thrombo-
embolic disease (Fig. 1a, Extended Data Fig. 2 and Supplementary 
Information, case histories). Patients required frequent hospitaliza-
tions and many medical interventions, including albumin infusions 
and IgRT, that failed to alleviate disease (Fig. 1b and Extended Data 
Fig. 3). In the extended families, we found 32 probable patients with 
CHAPLE disease, of whom 8 died in childhood (25%) and many 
others were severely ill.

Eculizumab causes rapid improvement in most symptoms 
and overall health. During medical care, we filed appeals to the 
Turkish Medicines and Medical Devices Agency to provide eculi-
zumab not as a clinical trial but for off-label use in the care of each 
of the 15 patients. The 16th patient was treated in the Netherlands 
using eculizumab provided by medical insurance. We observed 
treatment effects over a median of 20 months (interquartile range 
18–22 months) totaling 309 patient–months of data. Strikingly, 
most patients no longer required hospitalization or transfusions 
of albumin or immunoglobulin following eculizumab therapy 
(Fig. 1b). Three patients did not receive the full regimen due to inac-
cessibility (patient (P) 5) or medical reasons (P12), or there was only 
a partial drug response (P4 and Supplementary Information); how-
ever, all three responded to treatment adjustments. Long-standing 

Fig. 1 | The treatment effect of eculizumab in CHAPLE disease. a, A Kaplan–Meier plot showing cumulative frequency of being without hypoproteinemia 
(purple), bowel obstruction (red) and thromboembolic disease (green) versus time (years) (n!=!16). b, Timeline of hospitalizations (vertical line) and 
albumin infusions (circles) for 11 patients pretreatment (pre-Tx) (−) and post-treatment (post-Tx) (+) time (months). Red leftward arrowheads indicate the 
end of the observation period. c, Heatmaps of the prevalence (percentage of patients, n!=!16) in the study population of the indicated clinical parameter or 
therapeutic intervention, respectively, over patient lifetime (past), past year pre-Tx and the post-Tx observation period when a particular patient has been 
on regular eculizumab treatment. d, Serum albumin concentration before and after treatment beginning at t!=!0. Horizontal bars show normal range; gray 
bars indicate statistical comparison range using mixed-effects analysis with Tukey’s multiple comparisons correction (n!=!16). The statistical comparison 
of 4 versus 12 weeks revealed an adjusted P value of 0.3905 (NS, not significant). For each timepoint, the box plot shows the median, interquartile 
range, minimum and maximum values. e, Plots of weight and height (stature) z-scores compared to population averages pre-Tx and after 20!months of 
treatment using a paired t-test (n!=!12). Gray region indicates the normal range. Z-scores were calculated using an online calculator (https://peditools.
org/growthpedi/index.php) that uses Centers for Disease Control and Prevention (CDC) data tables as chart source. f, Total QOL score of patients using 
the KINDL-R questionnaire (n!=!9 for pre-Tx and 12 months’ assessments; n!=!8 at 1–6 months). The statistical comparisons were made by Wilcoxon 
matched-pairs signed-rank test. All P values are two-sided. MCT, medium-chain triglyceride; TNF, tumor necrosis factor; TPA, tissue plasminogen activator.
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pathophysiological signs and symptoms were eliminated by eculi-
zumab (Fig.  1c and Extended Data Figs.  1 and 2). Most previous 
treatment interventions became unnecessary (Fig. 1c and Extended 
Data Fig. 3). However, supplementation of iron and vitamin D, thy-
roxin, anticoagulants and thrombolytic medications continued to 

be needed by some patients. Within months, the children exhibited 
a healthier appearance and function. Serum albumin increased into 
the normal range within 2–4 weeks, and remained normal at least 
6 months or longer (Fig. 1e and Extended Data Fig. 1). The patients’ 
heights and weights improved, and the total quality of life (QOL) 
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scores increased (Fig. 1f,g, Extended Data Fig. 2 and Supplementary 
Figs. 2 and 3). However, thrombocytosis, thrombosis and pulmo-
nary embolism persisted in some patients (Fig.  1c and Extended 
Data Fig. 2). Overall, eculizumab treatment substantially restored 
normal physiology and immunity.

CHAPLE disease involves complement damage to GI lymphat-
ics, so we evaluated the intestinal mucosa by endoscopy2. We found 
that lymphangiectasia, reflected by the dense white aggregates 
imparting a grayish cast on the mucosa, was eliminated by treat-
ment (Fig.  2a). Eculizumab also promoted the healing of muco-
sal ulcers (Supplementary Fig.  4). Prospective symptom diaries 
revealed that the treatment reduced all GI symptoms and edema 
within 4 weeks (Fig. 2b, Extended Data Fig. 2 and Supplementary 
Fig. 5). Restoration of normal alimentary function was illustrated by 
increases in vitamin B12 and serum immunoglobulin, making IgRT 
and vitamin supplements unnecessary (Fig.  2c,d and Extended 
Data Fig. 1). We found markedly improved immune function, with 
reduced and less severe infections. Paitents with CHAPLE disease 
also have abnormal increases in triglycerides and platelets that were 
reversed by eculizumab (Fig.  2e,f). Moreover, a blood cell aggre-
gation abnormality was also eliminated by treatment (Fig.  2g). 
Radiological abnormalities, including bowel wall thickening, con-
trast enhancement, intestinal stricture and proximal dilatation, free 
fluid collection and abscess formation, also resolved with treatment 
(Fig. 2h). However, eculizumab therapy did not correct thrombo-
embolic disease in P4, P7 and P14, or ischemic gliotic foci in P12. 
Thus, eculizumab effectively ameliorated most disease findings 
except for thromboembolic disease.

Dosing intervals, interrupted therapy and pharmacokinetics. 
We next studied the pharmacokinetics and pharmacodynamics of 
eculizumab and total C5 (free + eculizumab bound). In a previ-
ous report, Kurolap et al. used an augmented induction regimen 
to account for GI protein-wasting with twice-weekly injections13. 
However, we found that once-weekly induction doses achieved a 
median trough concentration of eculizumab of 217 and 330 μg ml−1, 
at week 1 and weeks 2–4, respectively, which were much greater than 
100 μg ml−1, the minimum recommended concentration (Fig.  3a). 
Eculizumab complexed with C5 to increase the total C5 (free + ecu-
lizumab bound) in the blood to a median of 219 μg ml−1 (Fig. 3b). 
Even with the first dose, the eculizumab and total C5 concentra-
tions reached ~200 μg ml−1 and were stable with the maintenance 
doses (Fig. 3a,b). We also observed that if dosing was delayed, ecu-
lizumab and total C5 concentrations fell slowly and reached base-
line at 35 days (Fig. 3a,b). Total C5 for all patients reached a plateau 
when eculizumab reached 60–100 μg ml−1 and the ratio of total C5 
to eculizumab dropped below 2:1 (the theoretical ratio at which 
C5 becomes saturated by eculizumab) at 100 μg ml−1 eculizumab 
(Fig. 3c and Supplementary Fig. 6a). We therefore tested the activity 

of the classic complement pathway, employing the total hemolytic 
complement (CH50) test, and found it was completely inhibited by 
eculizumab > 100 μg ml−1 (Fig. 3d). Both the AH50 and CH50, mea-
suring the target lysis-inducing activity of the alternative and classical 
pathways, respectively, were correlated with eculizumab concentra-
tions and strongly suppressed at 1 week (Fig. 3e and Supplementary 
Fig. 6b,c). If dosing was delayed, eculizumab and total C5 concentra-
tions progressively decreased, and AH50 and CH50 test value out-
comes progressively increased with time (Fig. 3f and Extended Data 
Fig. 4). Thus, eculizumab rapidly and potently inhibits uncontrolled 
complement activation and reverses PLE in vivo.

We also tried extended dosing intervals11,12. Using 4-week dos-
ing, we found no disease relapse in P1, P3, P5, P8, P9, P10 and P11 
(Extended Data Figs.  4 and 5a). By contrast, P4, the most severely 
affected in our cohort, showed disease relapse unless we used a 
10-day dosing interval (Extended Data Fig.  5b). This finding was 
not explained by the CD55 mutation in P4, since the identical amino 
acid change is present in P2 and P5, who responded normally to ecu-
lizumab (Extended Data Fig. 1). In P4, we observed less CH50 and 
AH50 inhibition at comparable concentrations of serum eculizumab 
than in other patients (Fig.  3d,e). Also, total C5 accumulation was 
much higher in P4, suggesting eculizumab bound to C5 (Fig. 3b,c). 
We, therefore, performed whole-genome sequencing (WGS) on P4 
and his affected sister, P5, who had responded better to treatment. 
We detected no new or extremely rare variants but a single-nucleotide 
polymorphism (SNP) (rs17611) encoding a V802I amino acid substi-
tution in C5 that was homozygous in P4 and heterozygous in P5. This 
SNP is common (minor allele frequency = 0.4590 in the gnomAD 
database)) with global homozygosity of about 23% (32,516 homo-
zygous in 141,333 total individuals, https://gnomad.broadinstitute.
org/variant/9-123769200-C-T?dataset=gnomad_r2_1) and previ-
ously associated with inflammatory diseases, including liver fibrosis 
and rheumatoid arthritis17,18. The substituted residue is outside of 
the eculizumab binding site but alters the structure so that five new 
amino acid clashes occur in the complex (Supplementary Fig. 7a–c)19. 
Further genotyping showed that P8, P13 and P14 were also homozy-
gous for I802 (Supplementary Fig. 7d). These patients had compara-
tively higher antibody–C5 complex concentrations, reduced C5a and 
slightly higher soluble C5b–9 complex (sC5b–9) but did not require 
increased administration of eculizumab (Supplementary Fig.  7e–g). 
Previous in vitro work showed that eculizumab blocks C5I802 activity, 
but the variant protein is cleaved less efficiently by human neutrophil 
elastase17,20. Taken together, the C5802I /802I variant appears to alter the 
antibody–C5 complex and possibly its turnover21; however, more 
complicated factors are likely involved in the poor response of P4 to 
eculizumab therapy.

Eculizumab therapy was interrupted due to medication inacces-
sibility (P3 and P8) or a medical decision because of myocarditis 
(P12), and all experienced disease relapse (Extended Data Fig. 5c, 

Fig. 2 | GI, circulatory, hematologic and metabolic manifestations of CHAPLE disease with or without eculizumab. a, Duodenal endoscopy images pre-Tx 
showing white lymph globules due to lymphangiectasia (red arrows) and lymph leakage imparting a grayish color to the mucosa and after 14!months of 
treatment showing lymphangiectasia replaced by normal mucosa. b, Mean total weekly scores as defined in the Methods for the indicated parameters in 
each patient during the pre-Tx (0), 0–4!weeks and 4–14!weeks post-Tx are plotted. Statistics used the Friedman test and Dunn’s multiple comparisons test 
(two-sided P value; n!=!13 patients at each timepoint). IF,!inability to feed; BM,!number of bowel movements. c, Vitamin B12 concentration in serum before 
and after treatment beginning at t!=!0 (n!=!9). d, Serum IgG concentration before and after treatment beginning at t!=!0 (n!=!15 for pre-Tx and 2–4!month 
assessments; n!=!13 for 1!month assessment). e, Calculated mean and standard deviation for intrapatient repeated measurements of fasting blood 
triglyceride concentrations during pre-Tx periods or the indicated number of months post-Tx for each patient (n!=!15). In d and e statistical comparisons 
were made by mixed-effects analysis and Dunnett’s multiple comparisons test (two-sided P value). f, Mean and s.d. values for multiple platelet count 
measurements obtained in each patient during the pre-Tx period or the indicated number of months post-Tx. Two-sided P values are calculated from 
Wilcoxon matched-pairs signed-rank test, based on the calculated means of multiple measurements for a given interval (n!=!11 patients). g, Photographs of 
representative pre-Tx samples from P7 or normal control (NC) showing erythrocytes abnormally infiltrating the supernatant (arrow) during Ficoll gradient 
separation of PBMCs and disappearance of this phenotype post-Tx. h, Summary of radiological features before and after treatment. Red (+) shows 
presence of the sign and light blue (–) indicates absence. N/A, radiological studies not available. The asterisk in P7 indicates the presence of voluminous 
abdominal fluid before therapy that resolved following treatment (not shown). Shaded areas in c–f show normal range.
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Supplementary Fig.  8 and Supplementary Information). Thus, 
ongoing eculizumab therapy is necessary to sustain remission. 
Hence, CHAPLE disease differs from previous diseases in which the 
treatment can be tapered and discontinued22.

Complement markers before and during eculizumab treat-
ment. Because complement variations contribute to disease 
variability, we assessed blood concentrations of C3, C4 and C5, 

and their activation products together with copy number varia-
tions (CNV) in the C4 gene (Fig. 4a–j)23. We observed C3a, C4b, 
C5a and soluble terminal complex (sC5b–9) were increased and 
complement Factor H (CFH) was decreased in baseline disease 
compared to age-matched healthy controls (AMCs) (Fig.  4 and 
Supplementary Fig. 7f,g). After treatment, free C5, C5a, sC5b–6 
and sC5b–9 were swiftly reduced. Also, we found increased C4b 
and CFH but no reduction in C3a with therapy (Fig. 4b,e,f,g,k). 
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Intriguingly, we detected a temporary increase in total C3 and 
inactive C3b, but not C3b, with treatment (Fig. 4c). Perhaps the 
active C3b is rapidly inactivated by the inhibitory proteins, includ-
ing CFH and Factor I. These changes may be secondary to disso-
ciation of the C5-convertase complexes (by regulators other than 
CD55) upon abrupt removal of their substrate, the C5 molecule, 
from circulation since the eculizumab-bound form is inaccessible 
to the enzyme. Overall, eculizumab blocked the generation of 

the terminal complement activation mediators in patients with 
CHAPLE disease and caused secondary upstream effects.

C4 concentrations remained stable during treatment, but four 
subjects, P4, P5 and P7, with a history of thrombosis, and P6 with 
thrombocytosis, showed increased C4 (Fig.  4c). We evaluated C4 
CNV and found two patients had two C4 copies, six with three C4 
copies, one with four C4 copies and one with six C4 copies deter-
mined by estimation by WGS coverage (Supplementary Fig.  7h). 
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The most common copy number of C4 genes, present between 50% 
and 60% of healthy human subjects, was four copies, but most of 
our patients had fewer C4 copies24,25. Interestingly, consistently high 
serum C4 values were found in P5 and P6, even after 6 months of 
treatment, and they had the highest C4 copy number among all 
patients we followed. High serum C3 and C4 are associated with 
venous thrombosis in postnatal women or in the context of indi-
viduals with antiphospholipid antibodies, suggesting that the cor-
relation of thrombosis and high C4 concentrations due to CNV 
in our patients could be significant26,27. Our findings suggest that 
genetic variations in complement genes may account for disease 
expressivity or variable treatment responsiveness among different 
CD55-deficient individuals.

Mutant soluble CD55 does not prevent complement hyperactiva-
tion. The mutation in P12 inserted a stop codon for residue Gly348, 
which prevented addition of the glycerol phosphate-inositol mem-
brane anchor and allowed CD55 to escape as a soluble serum form 
(Supplementary Fig.  9). Although typically membrane bound, 
CD55 is also secreted as a soluble form that inhibits complement 
in the fluid phase28. P12 was as sick as the other patients, suggesting 
that this mutant soluble version of CD55 was not protective in the 
context of GI disease.

Microbiome changes following therapy. Pathological altera-
tions of the gut microbiota have been observed in inflamma-
tory and metabolic diseases15. Specifically, reductions in alpha 
diversity and increases in abundance of Enterobacteriaceae taxa 
occur in chronic inflammatory conditions including inflamma-
tory bowel disease, progressive human immunodeficiency virus 
infection and necrotizing enterocolitis29–33. We therefore per-
formed metagenomic profiling of feces from six patients with 
CHAPLE disease before and after eculizumab. We observed a 
trend toward increased alpha diversity over 12 months of treat-
ment (P = 0.09, linear mixed-effects models, Fig.  5a). Pre- and 
post-treatment bacterial microbiota profiles clustered separately, 
and baseline microbiota profiles exhibited greater within-group 
dissimilarity (Fig.  5b,c). A similar profile was evident for fungi 
but not DNA viruses (Supplementary Fig. 10). Thus, eculizumab 
treatment causes microbiome restructuring toward a common 
gut microbial community, possibly by eliminating microbiome 
stressors, including inflammation, abnormal bowel movements, 
abnormal food intake and/or medications, including antibiotics. 
Moreover, the treatment decreased Enterobacteriaceae (P = 0.013, 
Q value (a P value that has been adjusted for the false discovery 
rate (FDR)) = 0.099, Fig.  5d)—pro-inflammatory gut pathobi-
onts associated with chronic inflammatory diseases34. Also, the 
treatment increased Bifidobacteriaceae (P = 0.012, Q = 0.096) 
and Faecalibacterium prausnitzii (P = 0.019, Q = 0.08), which 
are important microbiota in healthy infants and are depleted in 

children with Crohn’s disease (Fig.  5e,f)16,35. Thus, eculizumab 
treatment shifted the microbiota composition from an inflam-
matory profile to an enrichment of taxa comprising a healthy 
microbiome35.

Metabolic response to therapy. To explore metabolic abnormali-
ties, we profiled 1305 serum proteins in eight patients using the 
SOMAlogic aptamer platform; 94 proteins differed significantly 
between patients and AMCs at baseline with Q < 0.05) (Fig. 6a and 
Supplementary Fig. 11). Interestingly, despite PLE, only 26 proteins 
were reduced (Fig. 6a), whereas 68 proteins were increased (Fig. 6a). 
Of the 68 upregulated proteins, the greatest increases were in 
insulin-like growth factor (IGF) binding protein 2 (IGFBP2), REG4, 
ADSL, NACA, APOE, MMP3, PYY, GSK3A and GSK3B, CCL28 
and PAPPA. Of the 26 downregulated proteins, those with the great-
est decreases were CA6, ADGRE2, BMP1, RET, CNTN4, APOM, 
NTRK3, EGFR, A2M and NTRK2, but CD55 was the lowest of any 
serum protein (Supplementary Fig.  12a,b). After eculizumab, the 
baseline patient values shifted closer to AMCs, especially for down-
regulated proteins (Supplementary Fig. 12c). At days 48–59, 23 of 
26 downregulated proteins recovered (Fig. 6b and Supplementary 
Fig. 12d), but only 18 upregulated proteins were reduced (Fig. 6b 
and Supplementary Fig. 12d). In an unsupervised principal compo-
nent analysis (PCA), patient samples at baseline (olive) moved pro-
gressively closer towards the controls (red) at 8–15 days (purple), 
16–30 days (bright green) and, even more so, at 48–59 days (blue) 
(Fig. 6c). The PCA confirms that decreased proteins recover almost 
completely, whereas the increased proteins reversed but never to 
normal (Fig. 6c). To validate the SOMAlogic protein changes, we 
used an enzyme-linked immunosorbent assay (ELISA) to check 
IGFBP2, which had the greatest elevation in disease and responded 
to therapy. The ELISA confirmed elevated IGFBP2 and its correc-
tion after treatment (Fig. 6d). Moreover, in P7 and P8, we found that 
a treatment delay caused an abrupt increase in IGFBP2, suggesting 
that it is a sensitive biomarker of disease activity.

We also observed that certain proteins normal at baseline in 
patients with CHAPLE disease changed after eculizumab therapy. 
In a rank analysis, soluble erythropoietin receptor (EPOR)—a pro-
tein involved in endothelial repair—showed the greatest increase 
(Fig. 6e,f)36,37. Among proteomic alterations, complement and coag-
ulation pathways were the top-ranking functional groups, despite an 
FDR > 0.05 (Extended Data Fig. 6a). CD55 regulates complement, 
innate immunity and coagulation, so we selected 53 complement 
and coagulation proteins measured by SOMAlogic and determined 
that half (24/53) showed changes at baseline or following therapy 
(Supplementary Fig. 13).

We also found substantial increases in proteins containing Ig-like 
domains (Supplementary Fig.  14). A tiny cluster (64 proteins) of 
such proteins were decreased (Extended Data Fig. 6b, blue lines). 
This cluster included several important immunoregulatory proteins, 

Fig. 4 | Blood concentrations of complement proteins and their activated products before and during eculizumab treatment. a, Pathway schematic of the 
complement system. iC3b, inactivated C3b; FI,!complement factor I; CFH,!Complement factor H; MASP,!mannose-associated serine protease. b, Summary 
of alterations in selected circulating complement markers in patients with CHAPLE disease. Arrows indicate the direction of change, if any: down arrow 
(decrease), up arrow (increase), or!horizonatal arrow!(no change). N,normal. c, Blood concentration (g!l−1) of intact C3 and C4, at baseline and during 
eculizumab treatment. Mean of repeated measurements at each time interval was plotted for individual patients. A mixed-effects model assessed the 
significance between values at different timepoints, with Tukey’s multiple comparisons test calculating adjusted P values for each pair (n!=!15 patients). 
d, Serum C4 levels in relation to estimated Complement C4 gene copy numbers based on C4 WGS coverage. In c and d, horizontal dashed lines show 
reference ranges. e,j, 

.

m
Blood concentration of complement products generated during complement activation at baseline and after eculizumab treatment. 

k, Soluble phase inhibitor CFH levels at baseline and during treatment. Statistics used to compare C3a between the three groups included an ordinary 
one-way ANOVA and the Tukey’s multiple comparisons test. Adjusted P values are indicated. Mann–Whitney (for comparing AMC versus patient baseline 
values), and Wilcoxon matched-pairs signed-rank tests (between patient baseline versus different post-treatment timepoints) analyzed the differences 
between groups in f–k (n!=!8 control subjects and n!=!8 patients for each analysis). Red dashed symbols filled with blue in h–j indicate values that 
correspond to dropped eculizumab concentrations after dose skipping. All P values are two-sided. Sample size for C3a: 16 AMC, 21 untreated patients and 
13 treated patients. Error bars indicate mean and s.d. MBL, mannose-binding lectin; RFU, relative fluorescence units.
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especially cell adhesion molecules, and showed an impressive recov-
ery with treatment (Extended Data Fig.  6b and Supplementary 
Fig. 15). Interestingly, 12 of the 27 immune-related molecules altered 
at baseline responded to eculizumab (Supplementary Fig. 16). Thus, 
inhibiting complement at the C5 level corrects many, but not all, 
immune and inflammatory abnormalities.

Discussion
We studied the compassionate use of eculizumab ‘off label’ to treat 
16 CHAPLE cases with distinct CD55 gene mutations. We were 
interested to understand how pharmacological inhibition down-
stream of C5 will affect immune dysregulatory disease caused by 
CD55 loss by affecting upstream control at the C3 convertase. 
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Previously, three members of a single family with CHAPLE dis-
ease improved with eculizumab treatment3,13. This success, and 
the global emergence of more CHAPLE cases, posed key immuno-
logical and metabolic questions that we have now investigated. We 
demonstrate that eculizumab is broadly effective in patients with 
CHAPLE disease with different CD55 gene mutations. Recovery 
from complement damage to gut lymphatics was achieved rap-
idly in 100% of cases. The loss of immunoglobulins, infections 
and long-standing functional GI abnormalities were substantially 
reversed, indicating that complement-mediated GI inflammation 
and lymphatic damage is reversible. However, the effects of the 
drug were temporary. We saw an immediate flare-up of symptoms 
and serum albumin and immunoglobulin loss when the medica-
tion was withdrawn. This observation implies that complement 
and its innate immune and inflammatory effector mechanisms are 
constantly stimulated, and that patients will require continuous 
treatment. Thus, eculizumab effectively treats, but does not cure, 

CHAPLE disease. Nonetheless, despite the high cost of eculizumab, 
our data support its early and continued use in CHAPLE disease. 
In addition, the therapeutic potential of an upstream blockade at 
the C3 level or combinatorial approaches with C3 and C5 block-
ade at different checkpoints could be considered in future studies, 
especially in patients with residual findings such as thrombocyto-
sis or thrombosis.

We also explored dosing regimens because eculizumab is 
extremely expensive, and insurance/health agencies are reluctant 
to pay for off-label use. The previous study recommended an aug-
mented induction regimen based on the theory that PLE would 
limit drug effectiveness, at least early during treatment3,13. However, 
we found that this was unnecessary. Our measurements of eculi-
zumab, total C5 (C5 + eculizumab), AH50 and CH50 showed that 
inhibitory blood concentrations were achieved rapidly, indicating 
that lymphatic leakage and PLE were surprisingly quickly mended. 
We also spaced out dosing intervals and found that almost half of 
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the patients required only 30-day maintenance doses, which sub-
stantially reduced the cost.

Serum proteomics revealed that GI disease and protein-wasting 
in patients with CHAPLE disease cause a starvation state, thereby 
explaining the physiological abnormalities in growth, activity and 
maturation. We found that the downregulated proteins were mostly 
rescued (23 of 26) by treatment, likely due to the prevention of lymph 
protein loss and anabolic processes. In intestinal lymphangiectasia,  

albumin and immunoglobulins are specifically lost38,39. We now 
show that immunoregulatory proteins with structural immuno-
globulin domains are also selectively lost40. By contrast, only 18 
of 68 upregulated proteins showed a significant correction with 
treatment. We conjecture that, because eculizumab blocks at the 
level of C5, immune activation and inflammation due to upstream 
C3a anaphylatoxin and C3b opsonization induces these pro-
teins in a self-perpetuating process despite eculizumab therapy41.  
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Interestingly, eculizumab treatment increased C3 and inacti-
vated C3b. Similar changes occur in PNH following eculizumab, 
with erythrocytes accumulating C3d on their surface. Opsonized 
erythrocytes undergo extravascular hemolysis, reducing the treat-
ment benefits42. Interestingly, total C4 concentration was elevated 
in patients with CHAPLE disease with four or six C4 gene cop-
ies. We also found that an SNP encoding the V802I amino acid 
substitution in C5 protein alters the blood concentration of the 
eculizumab-bound C5 complex, with potential affects on alterna-
tive C5 activation through human neutrophil elastase17. Our data 
suggests that these genetic factors may modify disease activity and 
pharmacodynamic properties of eculizumab in CHAPLE disease.

Our proteomics revealed multiple coagulation factor abnormali-
ties. Thus, CHAPLE disease involves the pathological cross-talk of 
complement abnormalities on coagulation similar to glycosylation 
disorders that also present with lymphangiectasia and coagula-
tion abnormalities43. Further studies are needed to understand the 
intersection of complement and coagulation pathways, especially 
in unexplained lymphangiectasia disorders. Interestingly, we found 
IGFBP2 to be a sensitive biomarker. High IGFBP2 concentrations 
were reported in various kidney diseases44. It is highly expressed 
in different cancers and promotes angiogenesis by enhancing vas-
cular endothelial growth factor (VEGF) expression45. We did not 
detect an apparent renal phenotype in CHAPLE; perhaps the bio-
logical IGFBP2 activity may be relevant to the circulatory features46. 
Unexpectedly, we found eculizumab treatment was also associ-
ated with increases in certain serum proteins that were normal in 
untreated disease. The EPOR showed the largest increase. Recent 
studies indicate that the EPOR is expressed in endothelial cells and 
is essential for healthy vasculature and vessel repair36,37. Thus, EPOR 
function may contribute to the therapeutic effects of eculizumab in 
healing damaged GI lymphatic vessels.

Genetic deficiencies of the complement inhibitors CD46, CD55 
and CD59 reveal protective roles in different organs. Germline 
CD55 deficiency in CHAPLE disease, like atypical hemolytic ure-
mic syndrome, causes abnormalities in coagulation, hematopoietic 
cells and endothelium, although it has a selective impact on the GI 
lymphatic vasculature. CD55 is upregulated by diverse stress or dan-
ger signals, suggesting that it has cytoprotective roles during inflam-
mation, coagulation and angiogenesis47. The same set of stimuli may 
not produce an identical response in CD46 or CD59, implying that 
the dominant inhibitor is context-dependent48. For example, CD59 
is expressed by blood vascular endothelial cells but is absent in lym-
phatic endothelium49. PNH involves a somatic mutation in eryth-
rocytes, so presumably CD55 and CD59 are intact in the gut and 
prevent GI manifestations9.

Gut microbiota may provide the constant stimulus to comple-
ment activation in CHAPLE disease. Our metagenomic profiling 
showed that patients with CHAPLE disease have pathological 
microbiota such as inflammation-associated Enterobacteriaceae and 
reduced Shannon diversity. These are signs of a diseased GI tract and 

might provide the impetus for ongoing local complement hyperac-
tivation. We found greater interpatient dissimilarity of microbiota 
before treatment, and homogenization afterwards. This is consis-
tent with the ‘Anna Karenina’ principle, whereby GI diseases cause 
distinct abnormal microbiota profiles in different patients, whereas 
microbiota configurations in healthy people converge toward a 
more homogeneous structure50. Eculizumab treatment removes 
microbiota stressors and rebalances a healthy microbiome.
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